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What is inversion?

• Quantitative knowledge and understanding of physical systems often rests on obtaining and
exploiting experimental data on system responses.

• Sought informations often “hidden”, with measurable quantities as consequences.

Example (electrostatics / heat equilibrium)

−div (σ∇u) = f in Ω, ∂nu = 0 on ∂Ω

Identify source f(x) or material parameter σ(x) from measurements of potential u.

Reconstruct brain electrical activity (sources). Measurements = potential (at electrodes)

Baratchard, Clerc, Leblond (2013)
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What is inversion?

Indirect measurement: quantify hidden p using measurable quantity d.
Mathematical model of underlying physics links d and p.

(i) Model yields d given p (ODEs, PDEs, variational problem, integral equations...)

G(p,d) = 0 (implicit), or occasionally d− G(p) = 0 (explicit).

If implicit, finding d (model prediction of data) given p is a well-posed problem.
• Well-posed mathematical problem (Hadamard’s definition): solution (a) exists, (b) is

unique, (c) depends continuously in the data.

Example (p = (Ω,σ, f), d = u)

Given Ω,σ, f , find u such that − div (σ∇u) = f in Ω, ∂nu = 0 on ∂Ω

(ii) Inversion (find p given data on d) is generally an ill-posed problem.
• Ill-posed mathematical problem: at least one of (a), (b), (c) above fails.

Inverse problem: (usually) quantitative exploitation and interpretation of data on configurations
involving complex modeling. Needs solving an ill-posed problem.
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Relevant situations (far from comprehensive!)

Reconstruction of underground physical
characteristics

• Data: seismic, gravimetric...,

• Scientific knowledge, resource
prospection.... . .

Non destructve evaluation

• Identification (flaws, cracks,. . . )

• Monitoring (civil engineering, industry)

Data: ultrasound, eddy currents,
thermography. . .

Tomography, medical imaging, elastography

• Data: X-ray, MRI, electrostatic, kinematic
fields. . .

Reconstruction of temperatures, thermal
fluxes. . . on hidden surfaces. . .

Identification using mechanical tests

• mechanical constitutive parameters

• model updating

Deconvolution

• restoration of blurry imges,

• interpretation of dynamical measurements

. . . and many more !
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Inverse and ill-posed problems: examples

1. Inverse and ill-posed problems: examples

2. Short overview of solution approaches

3. Finite-dimensional ill-conditioned linear systems

4. Regularization by promotion of sparsity

5. (a glimpse of) Bayesian approach to inverse problems
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Inverse and ill-posed problems: examples

(numerical) differentiation

• Antiderivative f(t) = Gu(t) :=
∫ t
0 u(τ) dτ : G : C0([0, T ]) → C0([0, T ]) (say) is continuous.

• Inverse problem u = f ′, i.e. solve Gu = f given f ∈ C0([0, T ]) is ill-posed.

• For example, let f ∈ C1([0, T ]) and set fδ(t) = f(t) + δ sin(t/δ2) ∈ C1([0, T ])
(small-amplitude, highly-oscillatory data perturbation). Then:

sup
t∈[0,T ]

|fδ−f | = Cδ but sup
t∈[0,T ]

|fδ ′−f ′| = Cδ−1

• Likewise, numerical differentiation with data noise is unstable: consider

f̂(x) = f(x) + b(x) b(x) : (noise)

Dhf̂(x) :=
1

2h
[f(x+ h)− f(x− h)] (central finite difference)

Assume f ′′ Lipschitz (with modulus L) and |b(x)| ≤B, then

|Dhf̂(x)− f ′(x)| ≤ Lh2 +
1

h
B

In particular, derivative estimation error increases under sampling grid refinement.
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Inverse and ill-posed problems: examples

Hadamard’s classic example: Cauchy ill-posed problem

∆u = 0 in (0,+∞)×R, u(0, y) = 0, ∂xu(0, y) =
sin ay

a
(a> 0)

Solution: u(x, y) =
sh ax sin ay

a2

Unfortunately, lim
a→∞

sh ax

a2
= ∞ for any x> 0: if a → ∞, data magnitude vanishes while

solution blows up at any internal point´
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Inverse and ill-posed problems: examples

Hadamard’s views on ill-posed problems

... and relevance to physics and engineering of solving ill-posed problems not recognized until the
60s (e.g. [Phillips 62; Tikhonov 63; Twomey 65; Tikhonov, Arsenin 75])

J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles lineraires hyperboliques (1932)
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Inverse and ill-posed problems: examples

Example: scalar equilibrium problem

Forward problem: find u (potential) in Ω given internal source f and conductivity σ

−div (σ∇u) = f in Ω, ∂nu = 0 on ∂Ω

• Variational formulation, with U =
{
w ∈ H1(Ω), ⟨w⟩Ω = 0

}
:

Find u∈U , A(σ, u, w)− F (w) = 0 for all w ∈ U


A(σ, u, w) :=

∫
Ω
σ∇u·∇w dV

F (w) :=

∫
Ω
f w, dS

• Well-posedness: the potential u ∈ U exists, is unique, and is continuous in f with

∥u∥1,Ω ≤
1

α
∥f∥0,Ω

for any f ∈L2(Ω) (by Lax-Milgram lemma, α∥w∥21,Ω ≤ A(σ, w, w), F (w) ≤ ∥f∥0,Ω ∥w∥1,Ω)
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Inverse and ill-posed problems: examples

Example: scalar equilibrium problem

Inverse source problem: given σ, find f from (possibly noisy) measurements uobs of u (in Ω, say).

• Measured data uobs usually assumed in L2(Ω) (rather than H1(Ω)) due to lack of control on
measurement noise

• Source-to-solution mapping: f ∈ L2(Ω) → u = S(f) ∈ H1(Ω), continuous

• Source-to-measurement mapping: f ∈ L2(Ω) → u = G(f) ∈ L2(Ω), continuous too

• We have G = I ◦ S where I involves a: compact embedding, hence G is compact.

• Likewise (measurement on ∂Ω), u ∈ H1/2(∂Ω) but uobs ∈ L2(∂Ω); again, G is compact.

1D example: −u′′ = f, u(0) = u(1) = 0 . Take fn = f +A cos 2nπx, then

u[fn]− u[f ] =
A

(2nπ)2

[
cos 2nπx− 1

]
Small-amplitude, oscillatory measurement perturbation if n large.
Data noise consistent with finite-amplitude, oscillatory conductivity perturbation
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Inverse and ill-posed problems: examples

Example: scalar equilibrium problem

Inverse conductivity problem: given f , find σ from (possibly noisy) measurement uobs of u in Ω.

• Conductivity-to-solution mapping: σ ∈ L∞(Ω) → u = S(σ) ∈ H1(Ω), continuous

• Conductivity-to-measurement mapping: σ ∈ L∞(Ω) → u = G(σ) ∈ L2(Ω), continuous too

• Again, G = I ◦ S and G is compact.

1D example: −(σu′)′ = 2, u(0) = u(1) = 0 . For σ = 1, we have u[σ] = x(1−x).

Perturbed conductivity: σn = 1− cosnπx
2+cosnπx

. Perturbed solution (known in closed form) verifies

u[σn]− u[σ] =
1−2x

4nπ
sin 2nπx+

1

(2πn)2

[
1− cos 2nπx

]
Small-amplitude, oscillatory measurement perturbation if n large. Moreover:

∥u[σn]− u[σ]∥L2 = O(n−1) but ∥u[σn]− u[σ]∥H1 = O(1)

Data noise consistent with finite-amplitude, oscillatory conductivity perturbation
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Inverse and ill-posed problems: examples

Example (scalar equilibrium problem): conductivity reconstruction from (simulated) boundary
data on potential

(a) “true” σ; reconstructions (b) no data noise, (c) 3% data noise (11 iterations), (d) 3% data
noise (50 iterations).

Kohn R.V., McKenney A., Inverse Problems 6:389–414 (1990).
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Inverse and ill-posed problems: examples

Example: annulus, reconstruction of internal boundary data

2D heat equilibrium equation: ∆θ = ∂rrθ + 1
r
∂rθ + 1

r2
∂φφθ = 0

General solution:

θ(r, φ) = a0 + b0 Log r +
∑

n≥1

{
(anr

n + cnr
−n) cosnφ+ (bnr

n + dnr
−n) sinnφ

}
Data on external boundary r=R:

θ(R,φ) = f(φ) = α0 +
∑

n≥1
αn cosnφ+ βn sinnφ

∂nθ(R,φ) = g(φ) = γ0 +
∑

n≥1
γn cosnφ+ δn sinnφ

Unknown temperature and flux at depth r= xR:

θ(xR,φ) = A0 +
∑

n≥1
An cosnφ+Bn sinnφ

θ,n(xR,φ) = C0 +
∑

n≥1
Cn cosnφ+Dn sinnφ

ϕ

aR

R

r (r = xR)

S

S

e

i

Unknowns An, Bn, Cn, Dn linked to data αn, βn, γn, δn (upon elimination of an, cn, bn, dn) by

Gn

{
nAn

xRCn

}
=

{
2nαn

2Rγn

}
, Gn

{
nBn

xRDn

}
=

{
2nβn

2Rδn

}
n ≥ 1

with Gn =

[
xn+x−n xn−x−n

xn−x−n xn+x−n

]
(x = r/R ≤ 1)

Singular (actually, eigen-)values of Gn: σn,1 = 2x−2n, σn,2 = 2x2n (exponentially decreasing) .
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Inverse and ill-posed problems: examples

Example: backward heat conduction equation

κ∂xxu− ∂tu = 0 (0≤ t≤ T, 0≤ x≤ ℓ) κ := k/(ρc)

u(0, t) = u(ℓ, t) = 0 (0≤ t≤ T )

u(x, 0) = u0(x) (0≤ x≤ ℓ)

Initial temperature: u0(x) =
∑

n≥0
an sin

nπx

ℓ
, an =

2

ℓ

∫ ℓ

0
u0(x) sin

nπx

ℓ
dx

final temperature: u(x, T ) =
∑

n≥0
bn sin

nπx

ℓ
, bn = an e−(nπ)2κT/ℓ2︸ ︷︷ ︸

σn

• Reconstruction of u0 given u(x, T ) (explicit inversion):

u0(x) =
∑

n≥0
σ−1
n bn sin

nπx

ℓ
σ−1
n = O(eCn2

) !

• Inverse problem: solve compact operator equation u(., T ) = Ku0, where

Kw :=

∫ ℓ

0
K(x, y)w(y) dy , K(x, y) :=

∑
n≥0

σn sin
nπx

ℓ
sin

nπy

ℓ

More generally (regularizing effect of heat diffusion): the solution of

∂tu− κ∆u = 0 in Ω× [0, T ], u = 0 on ∂Ω, u(·, 0) = u0 ∈ L2(Ω)

verifies u ∈ C∞(
[ε, T ];H1

0 (Ω)
)
for any ε> 0
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Inverse and ill-posed problems: examples

Compact operators

Let X ,Y Hilbert spaces, and let G : X → Y be linear and bounded (i.e. continuous).

• G is compact iff for any bounded sequence (xn)n ∈ X , yn := G(xn) contains a subsequence
converging in Y.

• G is compact iff there exist (σn)n ≥ 0 (singular values, with σn → 0) and orthonormal sets
of functions (fn)n ∈X , (gn)n ∈Y such that

G =
∑
n≥0

σn
(
fn, •

)
gn , i.e. Gx =

∑
n≥0

σn
(
fn, x

)
gn for any x∈X

with the series converging (in operator and ∥ •∥Y norms, resp.)

G−1 : Range(G)⊂Y → X cannot be continuous: G−1gn = σ−1
n fn, hence for any C =0 there

exists y ∈Y such that ∥G−1y∥X /∥y∥Y ≥ C.

Hence compact operator equations are ill-posed (they routinely occur in inverse problems!)

Prototype of linear ill-posed problem: first-kind integral equation with kernel K ∈ L2(Ω1×Ω2)
and data f ∈L2(Ω2):

Gu = f in Ω2 , G : L2(Ω1) → L2(Ω2), Gu( • ) :=

∫
Ω1

K(x1, • )u(x1) dx1 is compact
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Inverse and ill-posed problems: examples

Example: gravimety

Physical model (explicit): gravity field induced by mass density ϱ in region V :

g = Aϱ, [Aϱ](x) = G∇x

∫
V

ϱ(y)

∥x− y∥
dV (y)

=: G(ρ)(x)

(G ≈ 6.67408 10−11 m3 kg−1 s−2)

(V) ρ(  )

x_

y_

1

3

Inverse problem: given gravity measurements gobs, solve Aϱ = gobs (ill-posed 1st-kind linear
integral equation)

Solution multiplicity: Let z(y) defined in V such that z = ∂nz = 0 on ∂V . Then (3rd Green
identity and y 7→ 1/∥x−y∥ harmonic):

A(ϱ+∆z) = Aϱ in R3 \V
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Inverse and ill-posed problems: examples

Example: gravimetry

Source: http://www.csr.utexas.edu/grace/
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Inverse and ill-posed problems: examples

Example: deconvolution

First-kind integral equation of the form

f(y) =

∫
Ω
K(y−x)u(x) dx

E.g. model linear response of measurement devices:

• K(z) = δ(z) (perfect device)

• k(z) = A exp(−∥z∥2/2b) (image blurring caused by atmospheric turbulence)

• ...

• Deconvolution e.g. used for the restoration of blurred images

Linear response of dynamical system:

• k(x, t): response at (x, t) to impulsive point load δ(x)δ(t) in an infinite medium

• Then, for an arbitrary excitation ϕ(x, τ) (τ ≥ 0:

u(y, t) =

∫ T

0

∫
R3

k(x−y, τ− t)ϕ(x, τ) dx dτ

=⇒ identification of dynamical source is a deconvolution problem.

Deconvolution usually an ill-posed problem, due to smoothing character of forward convolution.
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Inverse and ill-posed problems: examples

Forward and inverse problems

Forward problem (mechanics, acoustics, electromagnetism, heat transfer...):

• Compute response d (displacement, stress, temperature, potentials. . . ) to excitations X
(sources, applied loads. . . )

X d
System

Input
(response)
Output

(excitation)

(p)

• System depends on known parameters (geometry, material, constraints. . . )

• (well-posed) forward problem: find response d given excitation X and parameters p.

Inverse problem: System at least partially unknown (sometimes, excitation unknown).

• (ill-posed) inverse problem: find missing information on system, given measurements of
responses under given excitations;
Sometimes, find missing information on excitations, given system and measured responses.

?X d

Input
(excitation)

Output
(response)

System
(p)
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Short overview of solution approaches

1. Inverse and ill-posed problems: examples

2. Short overview of solution approaches

3. Finite-dimensional ill-conditioned linear systems

4. Regularization by promotion of sparsity

5. (a glimpse of) Bayesian approach to inverse problems
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Short overview of solution approaches

Equation-solving vs. optimization

Equation solving viewpoint, e.g. find p such that dobs = G(p;X) , often unsuitable:

• No guarantee on solution existence or uniqueness (model underdetermination, data
inconsistent with model due to data noise and modeling assumptions);

• Discretized (or intrinsically finite-dimensional) inverse problems often such that

Dim(D) ̸= Dim(P) (D, P : data and parameter spaces)

• Overdetermination often desirable, up to

Dim(D) ≫ Dim(P)

• Consequently, inverse problem often set as minimization:

p⋆ ∈ arg min
p∈P

J(p), e.g. J(p) = ∥dobs − G(p;X)∥D

J(p) (usually) depends implicitly on p: evaluating d = G(p;X) requires solving forward
problem (ODE, PDE. . . ).
=⇒ frequent use of ODE / PDE constrained optimization
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Short overview of solution approaches

Regularization methods for inverse problems

• Let G : P → D. A family Rα : D → P of operators defines a regularization strategy for G if

→ Rα is continuous;
→ ∥RαGp− p∥P → 0 as α → 0 for any p∈P.

Consequently:

→ Assume Gp = d. Then, Rαd = RαGp → p as α → 0;
→ If G is invertible with continuous inverse, we can set Rα = G−1 as expected;

• Consider noisy data dδ such that δ = ∥dδ − d∥ (data noise level). Then, a regularized

solution pδα of the inverse problem is defined as pδα := Rαd
δ .

• Splitting of inversion error (for linear G and Rα): stability obtained at some cost in accuracy:

∥pδα − p∥ ≤ ∥Rα(d
δ−d)∥+ ∥RαGp− p∥

• Regularization parameter choice: aims at tuning α = α(δ) so that

∥Rα(δ)(d
δ−d)∥ → 0 as δ → 0,

so that pδ
α(δ)

:= Rα(δ)d
δ achieves ∥pδα(δ) − p∥ → 0 as δ → 0 .
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Short overview of solution approaches

Main general approaches to regularization

• Optimization with penalization: solve inverse problem as optimization problem of the form

min
p

Φ
(
∥Gp− d∥

)
+ αB(p),

where B is some positive functional which controls p. Archetypal example: Tikhonov
regularization

min
p

∥Gp− d∥2 + α∥p∥2

• Reduced / sparse discretization of p: seek p in some finite-dimensional space U , with
α = (dim(U))−1

• Iterative solver with premature stopping (“Landweber method”): apply iterative algorithm
to Gp = d, set pα(δ) = p1/N(δ) where some selection rule defines prtemature stopping N(δ)

for given noisy data dδ.

• Regularization parameter choice strategies:

▷ A posteriori rules, rely on availability of data noise estimate δ (e.g. Morozov principle
∥Gp− d∥ ≤ δ), value found in the process of computing pα;

▷ A priori rules, rely on the former and some prior information on solution smoothness,
value fixed without computing pα;

▷ Data error-free rules: typically aim at balancing data fidelity and regularization.
In particular: (i) Generalized cross-validation, (ii) L-curve heuristics.
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Finite-dimensional ill-conditioned linear systems
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Finite-dimensional ill-conditioned linear systems

Ill-conditioned linear systems

• Discretized (or finite-dimensional) inverse problems involve linear systems Gp = d
(G∈Km×n, most often m≥n) with often “unpleasant” characteristics:

→ G often has no specific properties (e.g. invertibility, symmetry, sign. . . ) and can even
be rectangular;

→ G may have full (theoretical) column rank;
→ However, G ill-conditioned with very fast decay of singular values, i.e. numerically

rank-deficient:

∥G−Gr∥ ≪ ∥G∥ for some rank-r matrix Gr, r ≪ n

→ imperfect data d (e.g. measurement errors)

• Studying them useful (a) in their own right, and (b) in preparation to more-complex settings.

• Overall concern: how to make the most of general linear systems lacking specific structure?

M. Bonnet (POEMS, ENSTA) Inverse problems: an overview 22 / 50



Finite-dimensional ill-conditioned linear systems

Condition number of matrices and linear systems

Solution of linear system Ay = b : sensitivity to data A, b (A ∈ Kn×n invertible)

• Perturbation z of solution y satisfies perturbed system (A+E)(y+z) = b+f .

• Relative sensitivity of solution w.r.t. data depends on condition number κ(A) = ∥A−1∥∥A∥:

∥z∥/∥y∥
∥f∥/∥b∥+ ∥E∥/∥A∥

≤ κ(A) +O
(
∥E∥/∥A∥

• Properties of κ(A):

▷ κ(A) depends on choice of (matrix) norm. κ(A)≥ 1 for any induced norm.

▷ For arbitrary A∈Km×n, κ2(A) given in terms of either singular values or
pseudo-inverse of A.

▷ κ2(Q) = 1 if Q orthogonal or unitary (since ∥Q∥2 = 1 and ∥Q−1∥2 = 1).
▷ Discretization of ill-posed linear equations yield ill-conditioned linear systems
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Finite-dimensional ill-conditioned linear systems

A simple numerical example

• Example (exact matrix inverse):

A =

10 7 8 7
7 5 6 5
8 6 10 9
7 5 9 10

 =⇒ A−1 =

 25 41 10 −6
−41 68 −17 10
10 −17 5 −3
−6 10 −3 2


Note: AAT = ATA (i.e. A is normal)

• Effect of perturbations of A or b on solution of x of Ax = b:

b = [ 32 23 33 31 ]T =⇒ x = [ 1 1 1 1 ]T

δb = [ 0.1 −0.1 0.1 −0.1 ]T =⇒ x = [ 9.2 −12.6 4.5 −1.1 ]T

δA23 = 0.1 =⇒ x ≈ [−4.86 −10.7 −1.43 −2.43 ]T

• Eigenvalues of A:

Λ ≈ Diag[ 30.29 3.858 0.8431 0.01015 ], κ2(A) ≈ 3 103

A is a rather ill-conditioned 4×4 matrix.
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Finite-dimensional ill-conditioned linear systems

Singular value decomposition (SVD)

• Diagonalization of square matrices: A = XΛX−1 for some invertible X and diagonal Λ
• A normal if and only if A diagonalizable with X unitary.

Includes all Hermitian matrices.

• There are (non-normal) non-diagonalizable matrices, e.g. A=

[
a b

0 a

]
Singular value decomposition generalizes diagonalization to any (even rectangular) matrix.

• Let A ∈ Km×n, then AHA ∈ Kn×n and AAH ∈ Km×m are square Hermitian.

Well-defined (symmetric positive) eigenvalue problems: AHAv = λv and AAHu = µu

(λ, v) eigenpair of AHA =⇒ (λ,Av) eigenpair of AAH

(µ, u) eigenpair of AAH =⇒ (µ,AHu) eigenpair of AHA

(equal multiplicities if λ = µ> 0, unequal multiplicity in general for λ = µ = 0).

Singular value decomposition

Any A∈Km×n has a SVD A = USV H, where:

• U = [un, . . . , um]∈Km×m, V = [v1, . . . , vn]∈Kn×n: unitary square matrices,

• S ∈Rm×n “diagonal”, with Sii = σi, Sij = 0 if i ̸= j.

• Singular values σi are real positive; conventionally σ1 ≥ σ2 ≥ . . . σmin(m,n) ≥ 0.

• Available operators: [U,S,V]=svd(A) (Matlab), F=svdfact(A) (Julia; F contains U, S, V )
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Finite-dimensional ill-conditioned linear systems

Singular value decomposition (SVD): some properties

• λi = µi = σ2
i (1≤ i≤ r).

• A = USV H =
∑min(m,n)

i=1 σiuiv
H
i (SVD is weighted sum of rank-one matrices).

• Reduced SVD. For A ∈ Km×n, rank(A) = r ≤ min(m,n):

A = USV H = UrSrV
H
r Ur = [u1, . . . , ur], Sr = diag(σ1, . . . , σr), Vr = [v1, . . . , vr]

(vectors ur+1, . . . , um and vr+1, . . . , vn inactive, generate N (A) and R(A)⊥).

• SVD is rank-revealing: rank(A) equal to number of nonzero singular values.

• Matrix 2-norm: we have ∥A∥2 = σ1 , since

∥Ax∥2 = ∥UrSrVrx∥2 = ∥SrVrx∥2 ≤ ∥Sr∥2∥Vrx∥2 ≤ ∥Sr∥2∥x∥2 = σ1∥x∥2

• 2-norm condition number: we have κ2(A) = σ1/σr

• Computing a SVD

→ requires solving an eigenvalue problem,
→ takes O(m2n) operations for A ∈ Km×n.
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Finite-dimensional ill-conditioned linear systems

SVD applied to arbitrary linear systems

Solvability of Ax = b (A ∈ Km×n):

Ax = b =⇒ USV Hx = b =⇒ S(V H
r x) = UHb i.e.

{
σi(v

H
i x) = uH

i b (1≤ i≤ r)

0 = uH
i b (r+1≤ i≤m)

• Solvability condition: uH
i b = 0 (r+1≤ i≤m), expresses b ∈ R(A).

Then, σi(v
H
i x) = uH

i b (1≤ i≤ r) determine these projections vH
i x uniquely

Remaining projections vH
i x (r+1≤ i≤m) arbitrary.

• General solution (if it exists):

x =
r∑

i=1

uH
i b

σi
vi +

n∑
i=r+1

xivi (xr+1, . . . , xn) ∈ Kn−r arbitrary

Setting xr+1 = . . . = xn = 0 gives minimum-norm solution

• Uniqueness condition: r=n (implies m≥n).
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Finite-dimensional ill-conditioned linear systems

SVD applied to least-squares problems

Linear least-squares problem min
x∈Kn

∥Ax− b∥2 :

∥Ax− b∥2 = ∥USV Hx− b∥2 = ∥U(SV Hx− UHb)∥2 = ∥S(V Hx)− UHb∥2

=
r∑

i=1

|σi(v
H
i x)− (uH

i b)|2 +
m∑

i=r+1

|uH
i b|2

Solutions always exist and are given by:

x =
r∑

i=1

uH
i b

σi
vi +

n∑
i=r+1

xivi (xr+1, . . . , xn) ∈ Kn−r arbitrary

Residual:

min
x∈Kn

∥Ax− b∥2 =

n∑
i=r+1

|uH
i b|2
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Finite-dimensional ill-conditioned linear systems

Pseudo-inverse of a matrix

Generalized inverse (i.e. pseudo-inverse) of A∈Km×n: a matrix A† ∈Kn×m verifying

(a) AA†A = A, (b) (AA†)H = AA†,

(c) A†AA† = A†, (d) (A†A)H = A†A.
(Moore-Penrose conditions)

Algebraic properties of A†

• (A†)+ = A.

• (Moore-Penrose) Pseudo-inverse A† satisfying (a)-(d) exists and is unique

• If A invertible, A† = A−1

• If rank(A) = n (full column rank, hence m≥n, AHA invertible): A† = (AHA)−1AH.

• If rank(A) = m (full row rank, hence m≤n, AAH invertible), A† = AH(AAHA)−1.

• Explicit formula using reduced SVD: A† = VrS
−1
r UH

r

General solution of least-squares problem:

x = A†b+ (I −A†A)w (A†b minimum-norm solution, , w ∈ Kn arbitrary)

• A† does not depend continuously on A. Example (rank(A) = r, rank(Aε) = r+1):

Aε = UrSrV
H
r , Aε = UrSrV

H
r + εur+1v

H
r+1 =⇒

∥A†
ε −A†∥
∥A†∥

=
σr

ε
≫ 1
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering

• Consider reference situation p∈Kn, d∈Km such that (using SVD (un, vn, σn) of G)

Gp = d, ∥p∥ minimum when r <n, i.e. p =
r∑

i=1

1

σi
(uH

i d) vi

• Filtered inversion for noisy data dδ = d+b (δ = ∥b∥: noise level): set

pα,δ = Rαd
δ =

n∑
i=1

wα(σi)
1

σi
(uH

i d) vi

for some filter function wα depending on a parameter α> 0 such that

lim
σ→0

wα(σ)/σ = 0, lim
σ→∞

wα(σ) = 1, lim
α→0

wα(σ) = 1, lim
α→∞

wα(σ) = 0.

• Note p = R0d (reference situation, α = 0) recovered in the limit α → 0, and

lim
α→0

pα,0 = p, lim
α→0

pα,δ = pδ

• Splitting of reconstruction error:

eα,δ = Rαd
δ − R0d = enoiseα,δ +eregα , enoiseα,δ := Rα(d

δ−d), eregα := Rαd− R0d

We find enoiseα,δ =
n∑

i=1

wα(σi)
1

σi
(uH

i b)vi, eregα =
n∑

i=1

(
wα(σi)−1

) 1

σi
(uH

i d)vi

In particular, eregα → 0 if α → 0.

• Limiting values: lim
α→0

∥enoiseα,δ ∥ = ∥R0b∥, lim
α→∞

∥eregα,δ∥ = ∥R0d∥
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: minimal-norm penalization

• Regularized least squares with minimal-norm penalization:

Rαd = arg min
p∈Kn

Sα(p; d) , Sα(p; d) =
1

2
∥Gp− d∥2 +

α

2
∥p∥2

Rαd =
[
GTG+ αI

]−1
GTd ; corresponding filter: wα(σ) =

σ2

σ2 + α

• Modulus of continuity a decreasing function of α: we find

∥Rα∥ = max
i≤r

σi

σ2
i +α

=


σr/(σ

2
r + α) if α≤ σrσr−1,

σi/(σ
2
i + α) if σi+1σi ≤α≤ σiσi−1 2≤ i≤ r − 1,

σ1/(σ
2
1 + α) if σ2σ1 ≤α,

• Data noise and regularization contributions to reconstruction error: we find

enoiseα,δ =
n∑

i=1

σi

σ2
i + α

(uH
i b)vi, eregα =

n∑
i=1

α

σi(σ2
i + α)

(uH
i d)vi

and in particular:

d

dα
∥enoiseα,δ ∥2

∣∣∣
α=0

< 0,
d

dα
∥eregα,δ∥

2
∣∣∣
α=0

> 0

Regularization (choice of α): a compromise between stability w.r.t. data noise and accuracy)
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: minimal-norm penalization

• Since ∀s> 0, s/(s2+α) ≤ α−1/2/2, we have

∥enoiseα ∥ ≤
1

2
α−1/2δ, lim

α→0
∥eregα ∥ = 0

Ajusting α to δ: if α = δp (0<p< 2)

∥eα∥ ≤
1

2
δ1−p/2 + o(1) = o(1) (δ → 0)

Analysis can be extended to e.g.

Sα(p, d) =
1

2
∥Gp− d∥2 +

α

2
∥p− pprior∥2
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: minimal-norm penalization

• Decomposition of cost function residual Sα(pα; d) at optimum into output residual and
solution norm:

Sα(p
α; d) = D(α) + αR(α) D(α) := ∥Gpα − d∥2, R(α) := ∥pα∥2

• Evaluation of residuals (using SVD of G):

D(α) =
r∑

i=1

α2

(σ2
i + α)2

|uH
i d|2 +

m∑
i=r+1

|uH
i d|2

R(α) =
r∑

i=1

σ2
i

(σ2
i + α)2

|uH
i d|2

• Output residual increases, and regularized solution norm decreases, with α:

D′(α) = 2α
r∑

i=1

σ2
i

(σ2
i + α)3

|uH
i d|2 > 0, D′(α) + αR′(α) = 0 ( =⇒ R′(α)< 0)
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering (minimal-norm penalization): L-curve

Define the L-curve (associated with cost function Sα) as the parametric curve
α≥ 0 7→ (D(α), R(α)) in (D,R)-plane.

• The L-curve is monotonic (R a decreasing function of D)

Proof: follows at once from D′ > 0 and R′ < 0

• The L-curve is convex

Proof: convexity here amounts to curvature κ(α) being positive, with
κ(α) := (D′R′′ −D′′R′) / (D′2 +R′2)3/2, and hence reduces to verifying
D′R′′ −D′′R′ ≥ 0.
Using property D′(α) = −αR′(α), we deduce D′R′′ −D′′R′ = R′2 ≥ 0.

• Extremal points A := (D(0), R(0)) et B := (D(∞), R(∞)) of L-curve (p := R0d:

D(0) = ∥Gp−d∥2, R(0) = ∥p∥2

D(∞) = ∥d∥2 > D(0) R(∞) = 0

Moreover, since (again) D′(α) = −αR′(α), the extremal slopes are

dR

dD

∣∣∣
α=0

= −∞,
dR

dD

∣∣∣
α=∞

= 0−
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Finite-dimensional ill-conditioned linear systems

Regularized least squares: choice of α using L-curve

• Assume data noise level δ is known (realistic in some cases, e.g. mechanical testing using
digital image correlation).

• Use that L-curve is convex, reformulate regularized least-squares:

min
p∈Kn

∥p∥22, subject to ∥Gp− dδ∥22 ≤ δ2

• Select α such that D(α) = δ2 (i.e. set LS residual equal to data noise)
• Unique solution provided δ < ∥dδ∥2

δ2

(D(0), R(0) )

C

(D(α(δ)), R(α(δ)) )

(D(∞), R(∞) )

D = ‖Gpα − bδ‖22

R = ‖pα‖22
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: truncated SVD

Matrices with fast decay of σi: truncated SVD as alternative to Tikhonov regularization.

• Ignore all singular values less than
√
α> 0, i.e. set wα(σ) = H(σ2−α) .

Regularized inversion then defined by

pα = Rαd :=

q(α)∑
i=1

qHi d

σi
vi, q(α) := sup

{
j, σ2

j −α≥ 0
}

hence: enoiseα,δ =

q(α)∑
i=1

1

σi
(uH

i b)vi, eregα =

q(α)∑
i=1

1

σi
(uH

i d)vi

• Since 1/σi <α−1/2 in enoiseα,δ , we may adjust α to δ as before: if α = δp (0<p< 2)

∥enoiseα ∥ ≤ α−1/2δ, lim
α→0

∥eregα ∥ = 0 and ∥eα∥ ≤ δ1−p/2 + o(1) = o(1) (δ → 0)

• Again by analogy with regularized least squares, define

Dq := ∥Gpq − d∥22 =
∑
i>q

|uH
i d|2 (decreasing), Rq := ∥pq∥22 =

∑
i≤q

|uH
i d|2

σ2
i

(increasing)

• L-curve Cn: interpolates points (Dq , Rq) (1≤ r≤n). Cn is convex:

Sq :=
Rq −Rq+1

Dq −Dq+1
= −

|zq+1|2

σ2
q+1

1

|zq+1|2
= −

1

σ2
q+1

, q 7→ Sq increasing

• Discrete parameter 1/q plays role of regularization parameter α.
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Finite-dimensional ill-conditioned linear systems

Regularized solution using truncated SVD

Eckart-Young-Mirsky theorem

Let A ∈ Km×n, q≤n. Âq is best rank-q approximation of A (spectral and Frobenius norms):

Âq = arg min
B∈Km×n

rank(B)=q

{
∥A−B∥2 or ∥A−B∥F

}
; ∥A− Âq∥2 ≤ σq+1, ∥A− Âq∥2F ≤

n∑
i=q+1

σ2
i .
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Finite-dimensional ill-conditioned linear systems

Discrete L-curve

δ2

Sr

(Dn, Rn)

C

r
r+1

(D1, R1)
(Dq(δ), Rq(δ) )

R = ‖pq‖22

D = ‖Gpq − dδ‖22

M. Bonnet (POEMS, ENSTA) Inverse problems: an overview 38 / 50



Finite-dimensional ill-conditioned linear systems

Example: backward heat equation

Physical problem: find the temperature distribution in a system before thermal measurements are
made (example: space vehicle re-entry).

Θ(·, T )︸ ︷︷ ︸
measurement

= A([0, T ])︸ ︷︷ ︸
heat eq.

Θ(·, 0)︸ ︷︷ ︸
unknown

0 0,2 0,4 0,6 0,8 1

x

0

0,05

0,1

0,15

0,2

θ
0

true

reconstructed, noise = 0

reconstructed, noise =  1e-10

numerical solution of 1D BHCP

M. Bonnet (POEMS, ENSTA) Inverse problems: an overview 39 / 50



Finite-dimensional ill-conditioned linear systems

Example: backward heat equation

Physical problem: find the temperature distribution in a system before thermal measurements are
made (example: space vehicle re-entry).

Θ(·, T )︸ ︷︷ ︸
measurement

= A(T )︸ ︷︷ ︸
heat eq.

Θ(·, 0)︸ ︷︷ ︸
unknown

=⇒ A(T )Θ0 = ΘT after space discretization of Θ

0 20 40 60 80 100

i

-40

-30

-20

-10

0

L
o

g
( 

σ
i )

Singular values of A(T ) (x ∈ [0, 1], ∆x = 1/100)

• Matrix A: exact rank 100, numerical rank < 10.
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Finite-dimensional ill-conditioned linear systems

Example: backward heat equation

Discrete L-curve, simulated data with δ = 10−5,

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

D
q

10
0

10
3

10
6

10
9

10
12

10
15

10
18

R
q

r=16 r=11 r=6 r=1

• Optimal choice of q (L-curve for noise level δ = 10−5);

• Lowest actual temperature reconstruction error: ≈ 10−2 (in relative L2 norm) for r = 19.
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Regularization by promotion of sparsity

1. Inverse and ill-posed problems: examples

2. Short overview of solution approaches

3. Finite-dimensional ill-conditioned linear systems

4. Regularization by promotion of sparsity

5. (a glimpse of) Bayesian approach to inverse problems
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Regularization by promotion of sparsity

Regularization by promotion of sparsity

Sparsity of (approximate) solutions of linear systems important for some applications:

• Image deblurring:

Gp = d+w, G = BW ,



W ∈Rm×n : wavelet basis

B ∈Rm×m : models blurring

p∈Rn : restored image

d∈Rm : blurred image (data)

w ∈Rm : unknown noise

Goal: find a sparse representation Wp =
∑n

i=1 wipi of restored image (pi = 0 for many i)

• Reflexive idea: regularized least squares (see previous)

min
p∈Rn

∥BWp− d∥22 + α∥p∥22

However, 2-norm regularizer ∥p∥22 allows many entries with small magnitude.

• Ideally, should use p=0 (“counting norm”). However, ∥ •∥pp non-smooth, non-convex if p< 1.

• Compromise choice: use 1-norm regularizer; ∥ •∥1 convex, Lipschitz (but not smooth)

min
p∈Rn

Jα(p), Jα(p) := ∥BWp− d∥22 + α∥p∥1 (“L2-L1 functional”)

Example: p = ε(1, . . . , 1); ∥p∥1 = nε penalizes non-sparsity better than ∥p∥22 = nε2

• More-difficult minimization problem: Jα not quadratic and not differentiable
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Regularization by promotion of sparsity

Minimization of functionals with a nonsmooth part

• Recall steepest descent update step for smooth (e.g. quadratic) functionals:

p(k+1) = p(k) − t(k)∇J(p(k)) , step length t(k) found by line search

Method of explicit type (∇J evaluated at initial point).

• L2-L1 functional Jα not everywhere differentiable:

→ ∇J(p(k)) potentially not defined
→ t 7→ Jα(p(t)) potentially not differentiable at some p(t) := p(k) − t∇J(p(k))

• Update step however generalizable to

J(p) = f(p) + g(p) f, g convex and f differentiable

Idea: modified update step (explicit for f but implicit for g):

(a) p̂(k) = p(k) − t∇f(p(k)), (b) p(k+1) = p̂(k) − t∇g(p(k+1)).

Fix step length t, solve (b) for p(k+1).

→ Trivial (closed-form) if g quadratic
→ Newton’s method if g twice-differentiable
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Regularization by promotion of sparsity

Minimization of functionals with a nonsmooth part

(a) p̂(k) = p(k) − t∇f(p(k)), (b) p(k+1) = p̂(k) − t∇g(p(k+1)).

• If g convex and differentiable, (b) can be reformulated as(
p(k+1)− p̂(k)

)
+ t∇g(p(k+1)) = 0,

equivalent (as necessary and sufficient optimality condition) to

p(k+1) = arg min
p∈Rn

(
1
2
∥p− p̂(k)∥22 + tg(p)

)
Still (uniquely) solvable if g convex and not differentiable.

• For h any lower semicontinuous (lsc) convex function, define proximal operator
proxh : Rn → R:

proxh(y) = arg min
x∈Rn

(
1
2
∥x−y∥22 + h(x)

)

Update rule for J(p) = f(p) + g(p), g convex but possibly non-smooth:

p(k+1) = proxtg
(
p(k) − t∇f(p(k))

)

h lsc: Epigraph
{
(x, t) ∈ Rn ×R, h(x)≤ t

}
closed in Rn ×R (among several equivalent definitions).
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Regularization by promotion of sparsity

Minimization of L2-L1 functionals

Specialize update step to L2-L1 functional Jα:

• Major simplification of non-smooth part:

g(p) = α∥p∥1 = α
(
|p1|+ . . .+ |pn|

)
• Proximal-operator defining minimization

proxtg(y) := arg min
x∈Rn

(
1
2
∥x−y∥22 + g(x)

)
uncouples into n univariate problems

min
x1∈Rn

1
2
|x1 − y1|2 + αt|x1|, . . . min

xn∈Rn

1
2
|xn − yn|2 + αt|xn|

• Univariate proximal operators found in closed form:

proxu7→αt|u|(y) = arg min
x∈R

(
1
2
(x−y)2 + αt|x|

)
=

{
0 |y| ≤ αt

y(1−αt/|y|) |y| ≥ αt

L2-L1 update step (given step length t):

(a) p̂(k) = p(k) − tAT(Ap(k)−b), (b) p
(k+1)
i =

{
0 |p̂(k)i | ≤ αt

p̂
(k)
i − αt sign(p̂

(k)
i ) |p̂(k)i | ≥ αt

.

• |y|<αt =⇒ proxu7→αt|u|(y) = 0: sparsity-promoting mechanism of L2-L1 minimization.

• Reduce α =⇒ weaker sparsity promotion.
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Regularization by promotion of sparsity

Minimization of L2-L1 functionals

Algorithm 1 FISTA iterations for the L2-L1 minimization problem (Beck, Teboulle 2009)

1: A ∈ Rm×n, b ∈ Rm, α> 0, x(0) ∈ Rn (data and initial guess)
2: L = ∥ATA∥2 (spectral radius of ATA, i.e. largest eigenvalue of ATA)
3: t = α/L (step length, maximum permissible value)
4: y(1) = x(0), s(1) = 1 (first iteration)
5: for k = 1, 2, . . . do
6: x̂(k) = x(k−1) − tAT(Ax(k−1)−b) (explicit step)
7: x(k) = proxu7→t∥u∥(x̂

(k)) (apply proximal operator)

8: s(k+1) = 1
2

(
1 +

√
1+4s(k)2

)
(update algorcolor parameter s(k))

9: y(k+1) = x(k) + s(k)−1

s(k+1)

(
x(k)−x(k−1)

)
10: If convergence test satisfied: return x = x(k)

11: end for
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Regularization by promotion of sparsity

“random” example

Jα(p) =
1
2
∥Gp− d∥22 + α∥p∥1, G ∈ Rm×n (m = 5000, n = 100), cond(G) ≈ 1.3 109.

min
x∈Rn

∥Gp− d∥2 ≈ 77.51

0 20 40 60 80 100

i

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

σ
i

Singular values of G

α #xα
i ̸=0 ∥Gpα−d∥2 ∥dα∥1 # iters.

0 100 77.51 3.54 107 N/A

0.002 54 78.16 1076. 436 197

0.005 8 78.19 224.0 226 218

0.01 5 78.21 53.80 81 683

0.1 2 78.22 1.538 5 564

0.2 3 78.22 1.17 5 031

0.5 2 78.22 0.9298 2 455

2 1 78.23 0.1076 873

M. Bonnet (POEMS, ENSTA) Inverse problems: an overview 47 / 50



Regularization by promotion of sparsity

Image restoration example (Beck, Teboulle 2009)

Original Blurred with alternative algorithm

with FISTA
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(a glimpse of) Bayesian approach to inverse problems

1. Inverse and ill-posed problems: examples

2. Short overview of solution approaches

3. Finite-dimensional ill-conditioned linear systems

4. Regularization by promotion of sparsity

5. (a glimpse of) Bayesian approach to inverse problems
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(a glimpse of) Bayesian approach to inverse problems

Conditional probability

• Definition of a conditional probability P (A|B):

P (A|B) =
P (A∩B)

P (B)

P (A∩B) = P (B∩A) (symétrie) donne la formule de Bayes:

P (A|B)P (B) = P (B|A)P (A)

• Idea: use Bayes to “invert” the parameter-data relationship between p and d:

fP|D(p|dobs)fD(dobs) = fD|P (dobs|p)fP (p)

fP (p): probability density describing prior information on p
fD|P (d|p): probability density describing the effect of the forward problem

(probability density describing modeling and measurement uncertainties)

fP|D(p|dobs)fD(dobs): probability density on p given d
(defines a solution of the inverse problem)

• Estimators on p extracted by post-processing fP|D(p|dobs). In particular:

pMAP = arg max
p

fP|D(p|dobs) Maximum a posteriori estimate
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(a glimpse of) Bayesian approach to inverse problems

Finite-dimensional inversion using Gaussian densities

• Probability density function of random Gaussian vector y ∈ Rn:

f(y) =
1√

(2π)Ndet(C)
exp

(
− 1

2
(y − y)TC−1(y − y)

)
y: mean value; C: (SPD) covariance matrix

• Prior information on parameter, data and model taken of the form

fP (p) = N (p0, Cp)

fD(d) = fD(d|dobs)µD(d) = N (dobs, Cd)

fD|P (d|p) = N (G(p), CT)

• Posterior informtion found to be defined by

fP (p) = (cste) fP (p)× exp
(
− 1

2
(G(p)− dobs)

TC−1
D (G(p)− dobs)

)
with CD = Cd + CT

• MAP estimate:

p⋆ = arg max
p

fP (p)

= arg min
p

{
(G(p)− dobs)

TC−1
D (G(p)− dobs) + (p− p0)

TC−1
p (p− p0)

}
Minimization problem that resembles a (deterministic) Tiknonov regularization
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