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What is inversion?

® Quantitative knowledge and understanding of physical systems often rests on obtaining and
exploiting experimental data on system responses.

® Sought informations often “hidden”, with measurable quantities as consequences.

Example (electrostatics / heat equilibrium)
—div(cVu) = f in Q, Onu = 0 on 00
Identify source f(x) or material parameter o(x) from measurements of potential u.

Reconstruct brain electrical activity (sources). Measurements = potential (at electrodes)

Baratchard, Clerc, Leblond (2013)
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What is inversion?

Indirect measurement: quantify hidden p using measurable quantity d.
Mathematical model of underlying physics links d and p. J

(i) Model yields d given p (ODEs, PDEs, variational problem, integral equations...)
G(p,d) = 0 | (implicit), or occasionally | d — G(p) = 0 | (explicit).
If implicit, finding d (model prediction of data) given p is a well-posed problem.

® Well-posed mathematical problem (Hadamard's definition): solution (a) exists, (b) is
unique, (c) depends continuously in the data.

Example (p = (2,0, f), d = u)
Given Q, 0, f, find w such that —div(ocVu) = fin Q, Opu = 0 on 092

(ii) Inversion (find p given data on d) is generally an ill-posed problem.

® |ll-posed mathematical problem: at least one of (a), (b), (c) above fails.

Inverse problem: (usually) quantitative exploitation and interpretation of data on configurations
involving complex modeling. Needs solving an ill-posed problem. J
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Relevant situations (far from comprehensive!)

Reconstruction of underground physical
characteristics

® Data: seismic, gravimetric...,

® Scientific knowledge, resource
prospection.... ..

Non destructve evaluation
® |dentification (flaws, cracks,...)
® Monitoring (civil engineering, industry)

Data: ultrasound, eddy currents,
thermography. . .

Tomography, medical imaging, elastography

® Data: X-ray, MRI, electrostatic, kinematic
fields. . .
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Reconstruction of temperatures, thermal
fluxes. . .on hidden surfaces. ..

Identification using mechanical tests
® mechanical constitutive parameters

® model updating

Deconvolution
® restoration of blurry imges,
® interpretation of dynamical measurements

. and many more !

4/50



. Inverse and ill-posed problems: examples

. Short overview of solution approaches

. Finite-dimensional ill-conditioned linear systems

. Regularization by promotion of sparsity

. (a glimpse of) Bayesian approach to inverse problems



Inverse and ill-posed problems: examples

(numerical) differentiation

® Antiderivative f(t) = Gu(t) : fo 7)dr: G: C9([0,T]) — C°([0,T]) (say) is continuous.
® Inverse problem u = f’, i.e. solve Gu = f given f € C°([0,T]) is ill-posed.

® For example, let f € C'([0,T]) and set fO(t) = f(t) + dsin(t/62) € C1([0,T])
(small-amplitude, highly-oscillatory data perturbation). Then:

sup |f°—fl=C6 but sup |f—f|=C5""

t€[0,T) t€[0,T)
® | ikewise, numerical differentiation with data noise is unstable: consider
f(@) = f(@) + b() b() : (noise)
A 1
Dy f(z) := %[f(:p + h) — f(x — h)] (central finite difference)

Assume f” Lipschitz (with modulus L) and |b(x)| < B, then

IDnf(z) — f'(2)] < Lh2 + %B

In particular, derivative estimation error increases under sampling grid refinement.
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Inverse and ill-posed problems: examples

Hadamard’s classic example: Cauchy ill-posed problem

Au=0in (0, 400) xR,  u(0,y) =0, u(0,y) = =¥ (a>0) J
a

h .
Solution:  u(z,y) = ety ;m Y
a

sh ax
Unfortunately, | lim = oo | for any z > 0: if a — oo, data magnitude vanishes while

a—» o0 a2

solution blows up at any internal point’
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Inverse and ill-posed problems: examples

Hadamard’s views on ill-posed problems

Mais il est remarquable, d’autre part, qu’on trouve un
guide sir dans l'interprétation physique : un probléme ana-
lytique est toujours correctement posé (au sens précédem-
ment indiqué), quand il est la traduction d’une question
mécanique ou physique; et nous avons vu que ceci est le
cas du probléme de Cauchy dans les exemples notés en
premier lieu.

Au contraire, aucun des problémes physiques en rapport
avec Au=0 ne se formule analytiquement sous la forme de
Cauchy (*). Chacun d’eux conduit & des énoncés tels que
celui de Dirichlet, ¢'est-a-dire avec une seule donnée numé-
rique en chaque point de la frontidre. Clest aussi le cas de
I'équation de la chaleur. Tout ceci est d’accord avec le fait
que les données de Cauchy, si elles ne sont pas analytiques;
ne sont pas de nature & déterminer une solution d’une
quelconque -de ces deux équations.

. and relevance to physics and engineering of solving ill-posed problems not recognized until the

60s

J. Hadamard, Le probléme de Cauchy et les équations aux dérivées partielles lineraires hyperboliques (1932)
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Inverse and ill-posed problems: examples

Example: scalar equilibrium problem

Forward problem: find u (potential) in Q given internal source f and conductivity o

—div(oVu)=f inQ, Opu=0 on o
® Variational formulation, with &/ = {w € H}(Q), (w)qo =0}:

Ao, u, w) ::/ oVu-Vw dV
Findueld, A(o,u,w)— F(w)=0 forallwel

Q
F(w) := o fw,dS

® Well-posedness: the potential u € U exists, is unique, and is continuous in f with

1
lulli,o < =[lfllo,e
[0

for any f € L2(Q) (by Lax-Milgram lemma, al|w||f o < A(0,w,w), F(w) < [|f]lo,e [lw]1,2)
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Inverse and ill-posed problems: examples

Example: scalar equilibrium problem

Inverse source problem: given o, find f from (possibly noisy) measurements u° of u (in €, say).
® Measured data u°® usually assumed in L2(Q) (rather than H'(Q)) due to lack of control on
measurement noise
® Source-to-solution mapping: feL?Q) = u=S8(f) € HY(Q), continuous
® Source-to-measurement mapping: feL?(Q) = u=G(f) € L?(), continuous too
® We have G =7 o S where 7 involves a: compact embedding, hence G is compact.
® Likewise (measurement on 9Q), u € H'/2(9Q) but u°* € L?(8Q); again, G is compact.

1D example: | —u"" = f, u(0) = u(1) =0 | Take fn, = f + Acos2nnx, then

A
u —ulf] = ——= | cos2nmx — 1
Unl = ulfl = 5| ]
Small-amplitude, oscillatory measurement perturbation if . large.
Data noise consistent with finite-amplitude, oscillatory conductivity perturbation
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Inverse and ill-posed problems: examples

Example: scalar equilibrium problem

Inverse conductivity problem: given £, find o from (possibly noisy) measurement u°% of u in Q.
® Conductivity-to-solution mapping: o€ L>®(Q) - u=S8(c) € H(R), continuous
® Conductivity-to-measurement mapping: ¢ € L™= (Q) — u = G(0) € L%(f), continuous too
® Again, G =Z oS and G is compact.

1D example: | —(ou’) =2, w(0) = u(l) =0 | For 0 = 1, we have uf[o] = z(1—=x).
cosnmxT
2+4cosnmx

Perturbed conductivity: 0, =1 — . Perturbed solution (known in closed form) verifies

—2x .
sin 2nmx +

1
—— = |1 —cos2nmx
dnm (27n)2 [ ]

ulon] — ulo] = !

Small-amplitude, oscillatory measurement perturbation if n large. Moreover:
lulon] = ulo]llL2 = O(n™") but |lufon] — ulo]| 71 = O(1)

Data noise consistent with finite-amplitude, oscillatory conductivity perturbation
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Inverse and ill-posed problems: examples

Example (scalar equilibrium problem): conductivity reconstruction from (simulated) boundary
data on potential

(a) “true” o; reconstructions (b) no data noise, (c) 3% data noise (11 iterations), (d) 3% data
noise (50 iterations).

Kohn R.V., McKenney A., Inverse Problems 6:389-414 (1990).
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Inverse and ill-posed problems: examples
Example: annulus, reconstruction of internal boundary data

2D heat equilibrium equation: A =0rr0 + 20,0 + 50,00 =0

General solution:
0(r,9) = ap + bo Logr + Z >1{(an7"" + cpr” ") cosng + (bnr™ 4+ dpr” ™) sin ncp}
nz

Data on external boundary r = R:
O(R,¢) = f(p) = a0 + ZnZl Qn, oS N + B, sin nep

nO(R, ) = g(p) =0 + ZnZl Yn COS NP + Iy, Sin N AN
Unknown temperature and flux at depth r =z R:

0(zR,p) = Ao + anl Ay cosng + By sinne

0 n(zR,p) = Co+ Zn21 Chp cosnp + Dy, sinng

(r=xR)

Unknowns Ay, Bn,Chp, Dy linked to data aum, Bn,Yn, 0n (upon elimination of an, ¢n,bn,dn) by

nAn | _ [2nan nBn | _ [2nBn
G {chn} - {2R%} > Gn {zRDn} - {2R6n} nzl
|:x +a " —x” :| (@=r/R<1)

with Gp = I

ona =222 g0 = 222" (exponentially decreasing) |

Singular (actually, eigen-)values of Gp:
12/50
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Inverse and ill-posed problems: examples

Example: backward heat conduction equation

KOzzu — Ogu =0 (0<t<T, 0<z<Y¥) K = k/(pc)
u(0,t) = u(4,t) =0 (0<t<T)
w(z,0) = uo(z) (0<z<Y)
2 0
Initial temperature: up(z) = ano an sinmgm, an = Z/o ug(z) sinm;t dx
- . nmx _ 2 2
final temperature: u(z,T) = ano by, sin WAL b, =ane (7”: wT/¢

® Reconstruction of ug given u(z,T) (explicit inversion):

_ —1p i TE -1 _ Ccn?y,
up(z) = ano 0, by sin 7 o, =0("")!
® Inverse problem: solve compact operator equation u(.,T) = Kug, where
13
Kw := /0 K(z,y)w(y)dy |, K(z,y) = ano on sin? sin?

More generally (regularizing effect of heat diffusion): the solution of
Ou—kAu=0 in Qx[0,T], uw=00n3dQ, u(-,0)=uyc L)

verifies u € C> ([e, T]; H} (R2)) for any & >0
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Inverse and ill-posed problems: examples

Compact operators

Let X', ) Hilbert spaces, and let G : X — Y be linear and bounded (i.e. continuous).

® G is compact iff for any bounded sequence (z,)n € X, yn := G(zy) contains a subsequence
converging in ).

® G is compact iff there exist (o )n >0 (singular values, with o, — 0) and orthonormal sets
of functions (fn)n € X, (gn)n €Y such that

G:X:Un(fn,-)gn7 ie. Gx:ZUn(fn,x)gn for any x € X

n>0 n>0

.

with the series converging (in operator and y norms, resp.)

G~1: Range(G) CY — X cannot be continuous: G=1g,, = oy ! fn, hence for any C' =0 there
exists y €Y such that |G~ y||x/|lylly > C. J

Hence compact operator equations are ill-posed (they routinely occur in inverse problems!)

Prototype of linear ill-posed problem: first-kind integral equation with kernel K € L2(Q1 x Q2)
and data f € L2(Q2):

(Gu=finQ|  G:L3(2) > L*(Q2), Gu(-):= [ K(x1,-Ju(x:)dz is compact
Q
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Inverse and ill-posed problems: examples

Example: gravimety

Physical model (explicit): gravity field induced by mass density o in region V:

6v. [ LY av)

g= Ao, [Ad(=x)

vz -yl
=:G(p)(x)
(G ~ 6.67408 10~ 1 m3 kg~ ' s~2) ‘
e
\ X
1
[ 1

Inverse problem: given gravity measurements g°, solve Ap = g° (ill-posed 1st-kind linear
integral equation)

Solution multiplicity: Let z(y) defined in V' such that z = 9,z = 0 on 9V. Then (3rd Green
identity and y — 1/||& —y|| harmonic):

A(o+Az)=Ap inR3\V
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Inverse and ill-posed problems: examples

Example: gravimetry
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Inverse and ill-posed problems: examples

Example: deconvolution

First-kind integral equation of the form
fw) = [ Ky—o)u(@)de

E.g. model linear response of measurement devices:
® K(z) = d(z) (perfect device)
® k(z) = Aexp(—||z||?/2b) (image blurring caused by atmospheric turbulence)
L4
® Deconvolution e.g. used for the restoration of blurred images
Linear response of dynamical system:
® k(x,t): response at (x,t) to impulsive point load §(x)d(¢) in an infinite medium

® Then, for an arbitrary excitation ¢(x,7) (7> 0:
T
u(y,t) = / / k(x—y,7—t)p(z,7)dedr
o Jm3

—> identification of dynamical source is a deconvolution problem.

Deconvolution usually an ill-posed problem, due to smoothing character of forward convolution.
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Inverse and ill-posed problems: examples

Forward and inverse problems

Forward problem (mechanics, acoustics, electromagnetism, heat transfer...):

® Compute response d (displacement, stress, temperature, potentials...) to excitations X
(sources, applied loads. . .)

GO = —> (4D

Input ~ Output
(excitation) (response)

® System depends on known parameters (geometry, material, constraints. . .)
® (well-posed) forward problem: find response d given excitation X and parameters p.
Inverse problem: System at least partially unknown (sometimes, excitation unknown).

® (ill-posed) inverse problem: find missing information on system, given measurements of
responses under given excitations;
Sometimes, find missing information on excitations, given system and measured responses.

@ S\&t)()‘m @ @

Input Output
(excitation) (response)
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Short overview of solution approaches

Equation-solving vs. optimization

Equation solving viewpoint, e.g.  find p such that d°®® = G(p; X) , often unsuitable:

® No guarantee on solution existence or uniqueness (model underdetermination, data
inconsistent with model due to data noise and modeling assumptions);

® Discretized (or intrinsically finite-dimensional) inverse problems often such that

| Dim(D) # Dim(P) | (D, P : data and parameter spaces)

® Overdetermination often desirable, up to

| Dim(D) > Dim(P) |

® Consequently, inverse problem often set as minimization:

p* € arg H;in J(p), eg J(p) = [d® — G(p; X)|Ip
pE

J(p) (usually) depends implicitly on p: evaluating d = G(p; X) requires solving forward
problem (ODE, PDE...).
= frequent use of ODE / PDE constrained optimization
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Short overview of solution approaches

Regularization methods for inverse problems

® let G: P — D. A family Ry : D — P of operators defines a regularization strategy for G if

— Rq is continuous;
— ||RaGp —p|lp — 0 as & — 0 for any pe P.

Consequently:

— Assume Gp = d. Then, Rod = R,Gp — p as a — 0;
— If G is invertible with continuous inverse, we can set R, = G~! as expected;

® Consider noisy data d® such that § = ||d® — d|| (data noise level). Then, a regularized

solution p‘sa of the inverse problem is defined as pi

® Splitting of inversion error (for linear G and Ry ): stability obtained at some cost in accuracy:
I = pll < [IRa(d® =d)|| + IRaGp — pl|

® Regularization parameter choice: aims at tuning o = «(J) so that
[Ra(s)(d® —d)|| =0 asd—0,

so that p‘;(é) = Ra((”cl‘S achieves Hp‘;(&) —p||l—=0asd—0.
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Short overview of solution approaches

Main general approaches to regularization

® Optimization with penalization: solve inverse problem as optimization problem of the form
min @ (||Gp — dl) + aB(p),

where B is some positive functional which controls p. Archetypal example: Tikhonov
regularization

min [|Gp — d||? + allp|?

® Reduced / sparse discretization of p: seek p in some finite-dimensional space U, with
a = (dim@))~!

® [terative solver with premature stopping ( “Landweber method”): apply iterative algorithm
to Gp = d, set p,(s) = P1/n(5) Where some selection rule defines prtemature stopping N(9)
for given noisy data d°.

® Regularization parameter choice strategies:

> A posteriori rules, rely on availability of data noise estimate § (e.g. Morozov principle
||Gp — dJ| < 8), value found in the process of computing pa;

> A priori rules, rely on the former and some prior information on solution smoothness,
value fixed without computing pq;

> Data error-free rules: typically aim at balancing data fidelity and regularization.
In particular: (i) Generalized cross-validation, (ii) L-curve heuristics.
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Finite-dimensional ill-conditioned linear systems

lll-conditioned linear systems

® Discretized (or finite-dimensional) inverse problems involve linear systems Gp = d
(G e K™*™ most often m > n) with often “unpleasant” characteristics:
— @ often has no specific properties (e.g. invertibility, symmetry, sign...) and can even
be rectangular;
— G may have full (theoretical) column rank;
— However, G ill-conditioned with very fast decay of singular values, i.e. numerically
rank-deficient:

G -G k|G for some rank-r matrix G, r < n

— imperfect data d (e.g. measurement errors)

® Studying them useful (a) in their own right, and (b) in preparation to more-complex settings.

® Overall concern: how to make the most of general linear systems lacking specific structure?
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Finite-dimensional ill-conditioned linear systems

Condition number of matrices and linear systems

Solution of linear system : sensitivity to data A,b (A € K™ invertible)

® Perturbation z of solution y satisfies perturbed system (A+ E)(y+2z) = b+ f.

® Relative sensitivity of solution w.r.t. data depends on condition number r(A) = |[A~1[|||Al|:

[
Tl + ETAT < <)+ OB/l

® Properties of k(A):

> k(A) depends on choice of (matrix) norm. [ k(A) >1 | for any induced norm.

> For arbitrary A € K™*"™, k5(A) given in terms of either singular values or
pseudo-inverse of A.

> k2(Q) = 1 if Q orthogonal or unitary (since ||Q|l2 = 1 and ||Q 7|2 = 1).

> Discretization of ill-posed linear equations yield ill-conditioned linear systems
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Finite-dimensional ill-conditioned linear systems

A simple numerical example

® Example (exact matrix inverse):

0 7 8 7 25 41 10 -6
|7 5 6 s 1 |-41 68 —17 10
A=13g 6 10 9of — A7 =1 10 —17 5 -3

75 9 10 6 10 -3 2

Note: AAT = ATA (i.e. A is normal)
® Effect of perturbations of A or b on solution of x of Ax = b:
b=1[3223 33 31]" = z=[111 1]
§b=1[01 —0.1 0.1 —0.1]" = 2=[9.2 —12.6 45 —1.1]"
§A23 =0.1 = z~[-4.86 —10.7 —1.43 —2.43]"
® Eigenvalues of A:
A ~ Diag[ 30.29 3.858 0.8431 0.01015], ko (A) ~ 3103

A is a rather ill-conditioned 4 x 4 matrix.
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Finite-dimensional ill-conditioned linear systems
Singular value decomposition (SVD)

® Diagonalization of square matrices: A = XAX ~! for some invertible X and diagonal A
® A normal if and only if A diagonalizable with X unitary.
Includes all Hermitian matrices.

® There are (non-normal) non-diagonalizable matrices, e.g. A= {g z:|

Singular value decomposition generalizes diagonalization to any (even rectangular) matrix.
® Let A c K™X", then A"A € K™X™ and AA" € K™X™ are square Hermitian.

Well-defined (symmetric positive) eigenvalue problems: | A" Av = M\v | and | AA"u = pu
(X, v) eigenpair of A"A = (), Av) eigenpair of AA"
(i, w) eigenpair of AA" = (u, A"u) eigenpair of A"A

(equal multiplicities if A = > 0, unequal multiplicity in general for A = u = 0).

Singular value decomposition

Any A€ K™X™ has a SVD A = USV", where:
® U= un,...,um] EK™X™ V = [v1,...,v,] €EK™X"™: unitary square matrices,
® SecR™*" “diagonal”’, with S;; = 0y, S;; =0 if i #£j.

® Singular values o; are real positive; conventionally o1 > 02 > ... Omin(m,n) = 0.

® Available operators: [U,S,V]=svd(A) (MATLAB), F=svdfact(A) (Julia; F contains U, S, V)
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Finite-dimensional ill-conditioned linear systems

Singular value decomposition (SVD): some properties
°* N =p =07 (1<i<r).
°* A=USVH = Z;":i'l'(m’") oiuvl! (SVD is weighted sum of rank-one matrices).
® Reduced SVD. For A € K™*"™, rank(A) = r < min(m,n):
A=USV" =U,S,. V! Ur = [u1,...,ur], Sy =diag(o1,...,00), Vi =[v1,...,0r]

(vectors w41, ..., Um and vp41, ...,y inactive, generate N'(A) and R(A4)1).

® SVD is rank-revealing: rank(A) equal to number of nonzero singular values.

® Matrix 2-norm: we have ||A||2 = o1 , since

[Azll2 = [|UrSrVizllz = |- Vezll2 < [ISell2]|Vrzll2 < [ISrl2llzll2 = oullzll2

® 2-norm condition number: we have k2(A) = o1/0r
® Computing a SVD

— requires solving an eigenvalue problem,
— takes O(m?n) operations for A € K™*n,
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Finite-dimensional ill-conditioned linear systems

SVD applied to arbitrary linear systems

Solvability of Az =b (A € K™*™):
Ar=b — USV'a—b — S(V'a)=UMp  je {000 =uwb (ISisn)
" 0 =ulb (r+1<i<m)

® Solvability condition: ufb =0 (r+1<i<m), expresses b € R(A).

Then, (1 <i<r) determine these projections vz uniquely

Remaining projections vz (r+1 <4 <m) arbitrary.

® General solution (if it exists):

s H n
u'b _ .
T = E ;i v; + E T;v; (Trs1,..-,2n) € K'™" arbitrary

i=1 i=r+1

Setting zr4+1 = ... = zn, = 0 gives minimum-norm solution

® Uniqueness condition: (implies m >n).
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Finite-dimensional ill-conditioned linear systems

SVD applied to least-squares problems

Linear least-squares problem min ||Az — b||? :
zeK™

1Az — bl|? = [USV¥e — bl|2 = [U(SVHa — UMB)|2 = [|S(VHa) — UMb

= loi(wie) = @iv)P + > |ufo?
i=1

i=r+1

Solutions always exist and are given by:

r H n
() _ .
T = Z ;i v; + Z T4 (Tr41,-..,2n) € K'™" arbitrary
1=1 1=r+1
Residual: n
in ||Az — b||* = Hb|2
Jin [|4z = b i:;I |ut'b]

28 /50
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Finite-dimensional ill-conditioned linear systems

Pseudo-inverse of a matrix
Generalized inverse (i.e. pseudo-inverse) of A€ K™*™: a matrix AT € K"X™ verifying
(a) AATA=A, (b) (AAT)H = AAT,
(c) Afaat = at (d) (AT = ATA

(Moore-Penrose conditions)

Algebraic properties of Af
o (AH)* = A.
® (Moore-Penrose) Pseudo-inverse At satisfying (a)-(d) exists and is unique
° If Ainvertible, AT = A1
® If rank(A) = n (full column rank, hence m >n, A" A invertible): AT = (A"A)=1AH
® If rank(A) = m (full row rank, hence m <n, AA" invertible), AT = AH(AAHA)~1
® Explicit formula using reduced SVD: Af = VTSZIUL*

General solution of least-squares problem:

z=Ab+ (I - AT A)w (ATH minimum-norm solution, ,w € K™ arbitrary)

® At does not depend continuously on A. Example (rank(A) = r, rank(A.) = 7 +1):

AL — At o
AT €

A = UpSp VI A = U S V! +€u,«+1v,'j+1 = >1

M. Bonnet (POEMS, ENSTA) Inverse problems: an overview 29 /50



Finite-dimensional ill-conditioned linear systems
Regularization of least squares by filtering

® Consider reference situation p € K, d € K™ such that (using SVD (up, vn,on) of G)
T
1
Gp=d, ||p|| minimum when r <mn, ie. p:Z—(u?d)vi
i=1 7t
® Filtered inversion for noisy data d® = d+b (5 = ||b]|: noise level): set
n

1
Pa,s = Radé = Z'U)a(o"i,)

g4

(u'd) v,
i=1
for some filter function w, depending on a parameter o > 0 such that

(}gno wa(o)/o =0, Uleréo wa(o) =1, Dltgrlo wa (o) =1, ah_)moo weq (o) = 0.

® Note p = Rod (reference situation, & = 0) recovered in the limit « — 0, and

lim pa,0 = p, lim pa,s = ps
a—0 a—0

® Splitting of reconstruction error:

€a,s = Rad® —Rod = o8¢ e85, elo%¢ .= R, (d° —d), eE:=Rad— Rod
; Z 1 z 1
We find Cos = Z wa(0;) ;(u?b)vi, et = Z (wa(os)—1) ;(u;‘d)v,‘
i=1 * i=1 i

In particular, eg® — 0 if « — 0.

FSE . : noise || __ . reg || __
® Limiting values: olélino llears Il = lIRabll, al;moo llegs !l = [IRod]|
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: minimal-norm penalization

® Regularized least squares with minimal-norm penalization:

. 1
Rad = arg min Se(p;d) ,  Sa(p;d) = = ||Gp —d||*> + = ||p|?
peEK™ 2 2

o2

Rod = [GTG + ol ] “1G7d | corresponding filter: | wa (o) = ———
oc + a

® Modulus of continuity a decreasing function of a: we find

or/(o7 +a) if a<oror_1,
HRQ||:m<ax 5 =Q0;/(c? +a) if oir10i<a<oioi_1 2<i<r-—1,
1<r Oi +a 9 .
o1/(of + @) if o201 < @,

® Data noise and regularization contributions to reconstruction error: we find
- o - e
noise __ % H . reg __ H i
ey = E 2 T (ui'b)vi, ent = E 7(0 n )(ul d)v;
i=1

i=1

and in particular:

d
noise |2 reg (|2
— <0 — ’ >0
L] <o Tl
Regularization (choice of a): a compromise between stability w.r.t. data noise and accuracy) )
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Finite-dimensional ill-conditioned linear systems
Regularization of least squares by filtering: minimal-norm penalization
® Since Vs >0, s/(s>+a) < a"1/2/2, we have
i L 12 .
e < Sa~1/26, i ] =0
Ajusting a to 6: if a =P (0<p<2)
1
leall < 551*1’/2 +o(1) =0(1) (§—0)
Analysis can be extended to e.g.

1 «
Sa(p7 d) = QHGP - d||2 + EHP _pprior”2
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: minimal-norm penalization

® Decomposition of cost function residual So(p®;d) at optimum into output residual and
solution norm:

Sa(p®;d) = D(e) + aR(a) D(a) == ||Gp™ —d|?, R(a) := [Ip™||?
® Evaluation of residuals (using SVD of G):
r a?
D(a) = ——|uld® + ufld|?
@)=Y (a g+ 3 Jul

=1 i=r+1

™ 0_2
R@) =2 gl

® Qutput residual increases, and regularized solution norm decreases, with «:

_2az( pa | Hd)? > 0, D'(a) + aR'(a) =0 (= R'(a)<0)
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering (minimal-norm penalization): L-curve

Define the L-curve (associated with cost function S ) as the parametric curve
a>0+— (D(a), R(a)) in (D, R)-plane.
® The L-curve is monotonic (R a decreasing function of D)
Proof: follows at once from D’ >0 and R’ <0 O
® The L-curve is convex

Proof: convexity here amounts to curvature k(o) being positive, with
k(a) = (D'R" — D"R') /(D2 + R'2)3/2, and hence reduces to verifying
D'R"—-D"R > 0.

Using property D'(a)) = —aR/(«), we deduce D'R"” — D" R’ = R'? > 0. O
® Extremal points A := (D(0), R(0)) et B := (D(o0), R(c0)) of L-curve (p := Rod:
D(0) = ||Gp—d||*, R(0) = [lp|I?
D(o0) = [|d]|* > D(0) R(o0) =0
Moreover, since (again) D’(a) = —aR/(«), the extremal slopes are
dR dR _
dDla=o ~ ' dDla=eo
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Finite-dimensional ill-conditioned linear systems

Regularized least squares: choice of « using L-curve

® Assume data noise level § is known (realistic in some cases, e.g. mechanical testing using
digital image correlation).
® Use that L-curve is convex, reformulate regularized least-squares:

min pll3,  subject to [|Gp — ds|3 < o
peKﬂ,

® Select « such that D(a) = 62 (i.e. set LS residual equal to data noise)
® Unique solution provided § < ||ds||2

R= HpuH%

D = ||Gps — bd”%
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Finite-dimensional ill-conditioned linear systems

Regularization of least squares by filtering: truncated SVD

Matrices with fast decay of o;: truncated SVD as alternative to Tikhonov regularization.

® Ignore all singular values less than \/a >0, i.e. set | wa (o) = H(o? — ) |

Regularized inversion then defined by

q(a) qu
p&:Rad::Z 1‘ q(e) := sup{, ajzfaz(]}
i=1 ¢
q(o) 1 q(a) 1
. noise __ - H . reg __ = (,H
hence: ense = ; - (uy'b)v, €no = ; p (ufd)v;

® Since 1/0; <~ 1/2in e”a°i§e, we may adjust o to § as before: if o =67 (0<p<2)
leg™) < a”t25, lim |8 =0 and [leal| < 8"/ 4 0(1) = o(1) (5 0)
a—r

® Again by analogy with regularized least squares, define

. |qu|2
Dy :=|Gpg —d|j3 = |u}ld|* | (decreasing), |Rq:=llpqll3 =Y  —5—
i>q i<q i

(increasing)

® |-curve C,: interpolates points (Dg, Ry) (1 <7 <n). Cy is convex:
R;— R z 2 1 1 . .
Sy = 2 atl _ _ q2+1| = ——5— g+ Sq increasing
Dq = Dg+41 Og+1 |Za1l Tg+1

® Discrete parameter 1/q plays role of regularization parameter .
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Finite-dimensional ill-conditioned linear systems

Regularized solution using truncated SVD

Eckart-Young-Mirsky theorem

Let A € K™*X" g<n. A\q is best rank-g approximation of A (spectral and Frobenius norms):

n
A, = argmin {|A=Blz or [A=Ble };  A=Agllz Soqr1, IA-AJE< Y oF.
BeK™Mm X" il
rank(B)=q
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Finite-dimensional ill-conditioned linear systems

Discrete L-curve

R =5

(Dth)
D = ||Gp, — ds|3
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Finite-dimensional ill-conditioned linear systems

Example: backward heat equation

Physical problem: find the temperature distribution in a system before thermal measurements are
made (example: space vehicle re-entry).

o(.T) = A(0,7])©(0)
N—— ——— ——

measurement heat eq. unknown
numerical solution of 1D BHCP
0,2
— true
L reconstructed, noise = 0 i
o—= reconstructed, noise = le-10
o
0,15 ' ) i
,f‘ g
y 1
// /
S ol ¢/ _
D //,
b/é_e?’/'@‘x
L / 1
{ S
7
0,05 r7 B
| | |
0.4 0.6 0.8 1
X
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Finite-dimensional ill-conditioned linear systems

Example: backward heat equation

Physical problem: find the temperature distribution in a system before thermal measurements are

made (example: space vehicle re-entry).

o-,T) = A(T) ©(-,0) = | A(T)O9 = Or | after space discretization of ©
SN—— SN——

measurement heat eq. unknown
0
-0~
~ F
©
— 20k
55 20
Q
- L
30 -
40 | | | |
0 20 40 60 80 100

i
Singular values of A(T) (z € [0, 1], Az = 1/100)
® Matrix A: exact rank 100, numerical rank < 10.
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Finite-dimensional ill-conditioned linear systems

Example: backward heat equation

Discrete L-curve, simulated data with 6 = 1072,

10
ll)lii
lli
10
! E
a4 a
loéi
F =16 r=11 r=6
10 —
cord vowd vl vl Sl vl ol D ol il S
0" 10" 10”10t 10’ 10 10° w0t 10t 10t 1wt 1
D
q

e Optimal choice of ¢ (L-curve for noise level § = 107°);

® Lowest actual temperature reconstruction error: ~ 1072 (in relative L2 norm) for r = 19.
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Regularization by promotion of sparsity

Regularization by promotion of sparsity

Sparsity of (approximate) solutions of linear systems important for some applications:

® |mage deblurring:

W e R™mX" . wavelet basis
B eR™X™ :  models blurring

Gp = d+w, G = BW | pER™: restored image
deR™ : blurred image (data)
wER™ : unknown noise

Goal: find a sparse representation Wp = >_"" | w;p; of restored image (p; = 0 for many )
® Reflexive idea: regularized least squares (see previous)
min ||[BWp — d||3 + «||p||2
min |[BWp — dI + allpl3

However, 2-norm regularizer ||p||2 allows many entries with small magnitude.
Ideally, should use p =0 ( “counting norm”). However, ||-||} non-smooth, non-convex if p < 1.

® Compromise choice: use 1-norm regularizer; ||||1 convex, Lipschitz (but not smooth)

min Ja(p),  Ja(p) = |BWp—dl3 +alplh  (“L*-L! functional’)
pERN
Example: p =¢(1, ..., 1); |[p|l1 = ne penalizes non-sparsity better than ||p||2 = ne?

® More-difficult minimization problem: J, not quadratic and not differentiable
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Regularization by promotion of sparsity

Minimization of functionals with a nonsmooth part

® Recall steepest descent update step for smooth (e.g. quadratic) functionals:

plEt1) = plk) _ t(k>VJ(p(k)) R step length t(*) found by line search

Method of explicit type (V.J evaluated at initial point).

e 2L functional J, not everywhere differentiable:

— VJ(p®)) potentially not defined
— t+ Jao(p(t)) potentially not differentiable at some p(t) := p(*) — tV.J(p(k))

® Update step however generalizable to
J(p) = f(p) + 9(p) f,g convex and f differentiable
Idea: modified update step (explicit for f but implicit for g):

(@) p® =p® —tvie®),  (b) p*TD =p*) —1vg(p*tD).

Fix step length ¢, solve (b) for p(f+1),

— Trivial (closed-form) if g quadratic
— Newton’s method if g twice-differentiable
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Regularization by promotion of sparsity

Minimization of functionals with a nonsmooth part

(a) s =p® —tvr(E®),  (b) p*tD =p*) _1vg(EKtY).

® If g convex and differentiable, (b) can be reformulated as
(P —p™)) +1vg(p*tV)) = o,
equivalent (as necessary and sufficient optimality condition) to
P+ = arg min ( §lp—5* |3 + t9(p) )
pER™

Still (uniquely) solvable if g convex and not differentiable.

® For h any lower semicontinuous (Isc) convex function, define proximal operator
prox, : R™ — R:

proxy, (y) = arg min (zlle—yll3 + n(z))
ZERT

Update rule for J(p) = f(p) + g(p), g convex but possibly non-smooth:

P = prox,, (p*) — tv £(p*)))

h Isc: Epigraph {(z,t) € R™ xR, h(z) <t} closed in R™ X R (among several equivalent definitions).
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Regularization by promotion of sparsity

Minimization of L2-L! functionals

Specialize update step to L2-L! functional Jy:
® Major simplification of non-smooth part:
9(p) = allpll1 = a(lp1|+...+|pal)
® Proximal-operator defining minimization

prox, (y) := arg min (3llz—yli3 +g(x))
xeR™

uncouples into n univariate problems

xlinel]l%" %|x1 _y1|2 + at|zi], ... x?el]%ﬂ %|xn _yn‘2 + at|zn|
® Univariate proximal operators found in closed form:
. 0 ly] < at
1 2 <
prox (y) =arg min (5 (z—y)* + at|z]) =
wrattd sn (3 )= Wwa-at/l) Iyl at

L2-L!' update step (given step length t):

(2) 58 = p® —eaT(ap® —p),  (0) PV = {9 (k) \ﬁégl =
p;  —atsign(p; ') |p; | > at

® |yl <at = prox (y) = 0: sparsity-promoting mechanism of L2-L! minimization.

ur—ot|u|

® Reduce « —> weaker sparsity promotion.
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Regularization by promotion of sparsity

Minimization of L2-L! functionals

Algorithm 1 FISTA iterations for the L2-L! minimization problem (Beck, Teboulle 2009)

AeR™X" peR™, a>0,z(0 ¢ R? (data and initial guess)

L=|ATA|2 (spectral radius of ATA, i.e. largest eigenvalue of ATA)
t=a/L (step length, maximum permissible value)

4y =20 (1) =1 (first iteration)

5. for k=1,2,... do

6 (k) = z(k 1) _ tAT(Az=1) —p)  (explicit step)

7

@w N R

x<k) = proqutHuH(x( )) (apply proximal operator)
g skt = %(1 +V1+4sF)2) (update algorcolor parameter s(*))
oyt = g(k) 4 ff:)fﬁ (z(®) —z(k=1)
10 If convergence test satisfied: return z = ()
11: end for
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Regularization by promotion of sparsity

“random” example

Ja(p) = 2IGp —d|l3 + allplli, G €R™™ (m =5000, n=100), cond(G)= 1.310°.

in ||Gp — d||2 &~ 77.51
min [|Gp —d|2

o || #27#0|[Gp® —dll2 | [[d*]|1 | # iters.

0 100 77.51|3.54107 N/A

0.002 54 78.16 | 1076. | 436197

0.005 8 78.19| 224.0|226218

0.01 5 78.21| 53.80| 81683

0.1 2 78.22| 1.538| 5564

0.2 3 78.22 1.17| 5031

o ‘ ‘ ‘ ‘ 0.5 2 78.22| 0.9298| 2455
0 0 0o, ® 80 100 2 1 78.23| 0.1076 873

1
Singular values of G
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Regularization by promotion of sparsity

Image restoration example (Beck, Teboulle 2009)

MTWIST: Fipo = 3.83e-1 MTWIST: Fyyg = 3.41e-1

Original Blurred with alternative algorithm

FISTA: Figp = 3.2le-1 FISTA: Fy = 3.09-1

with FISTA

M. Bonnet (POEMS, ENSTA) Inverse problems: an overview 48 /50



. Inverse and ill-posed problems: examples

. Short overview of solution approaches

. Finite-dimensional ill-conditioned linear systems

. Regularization by promotion of sparsity

. (a glimpse of) Bayesian approach to inverse problems



(a glimpse of) Bayesian approach to inverse problems

Conditional probability

® Definition of a conditional probability P(A|B):
P(A|B) = P(ANB)
P(B)

P(ANB) = P(BNA) (symétrie) donne la formule de Bayes:
| P(AIB)P(B) = P(BA)P(4) |

® |dea: use Bayes to “invert” the parameter-data relationship between p and d:
f’PlD(pldobs)fD(dobs) = fD\’P(dobs|p)f73 (p)

fp(p): probability density describing prior information on p
fp|p(d|p): probability density describing the effect of the forward problem
(probability density describing modeling and measurement uncertainties)

TP D (Pldobs) fp (dobs): probability density on p given d
(defines a solution of the inverse problem)

® Estimators on p extracted by post-processing fpm(p\dobs). In particular:

Puap = arg max fp|p (P|dobs) Maximum a posteriori estimate
P
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(a glimpse of) Bayesian approach to inverse problems

Finite-dimensional inversion using Gaussian densities

® Probability density function of random Gaussian vector y € R™:

1 T _
f(y)ZWexp(—%(y—y) ¢ 1(?/—11))

y: mean value; C: (SPD) covariance matrix

® Prior information on parameter, data and model taken of the form

Ir(p) = N(po, Cy)
Ip(d) = fp(dldobs) D (d) = N (dobs, Cy)
fp|p(dlp) = N(G(p),Cr)

® Posterior informtion found to be defined by
fp(p) = (cste) fp(p) X exp(—3(G(p) — dobs)"Cp' (G(P) — dobs))

with Cp = Cqy + Cr
® MAP estimate:

*

p* = arg max fp(p)
P

= arg min { (G(p) = dobs)"Cp ' (G(P) — dobs) + (p = p0) ' C; (0 = p0) }
p
Minimization problem that resembles a (deterministic) Tiknonov regularization
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