Adjoint solution method for inverse and optimization problems.

Marc Bonnet

Propagation des Ondes: Etudes Mathématiques et Simulation (POEMS) UMR 7231 CNRS-INRIA-ENSTA Unité de Mathématiques Appliquées ENSTA Paris

mbonnet@ensta.fr

Contents

1. Introduction

- 2. Time-independent case
- 3. Linear time-dependent case
- 4. Second-order derivatives
- 5. Topological derivatives for qualitative inverse scattering
- 6. Closing remarks

1. Introduction

- 2. Time-independent case
- 3. Linear time-dependent case
- 4. Second-order derivatives
- 5. Topological derivatives for qualitative inverse scattering
- 6. Closing remarks

Introduction

Optimization and inversion based on physical ODE/PDE models

- Optimization (inverse, optimal control...) problems based on PDE/ODE models arise in many areas of science and engineering
- Often, find some parameter, control variable...given data or target on state variable(s)
- Widespread use of PDE-constrained optimization. Possibly most well-known use: full-waveform inversion (FWI) in geophysics
- Includes optimization problem yielding MAP (Bayesian) estimates
- Includes treatment of constitutive identification using error in constitutive relation (my last two talks)

S. Kurtz, PhD 2023

Introduction

Bayesian solution approach (Angèle's talks), short reminder

• Definition of a conditional probability P(A|B):

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$

 $P(A \cap B) = P(B \cap A)$ (symmetry) yields Bayes' formula:

P(A|B)P(B) = P(B|A)P(A)

• Idea: use Bayes to "invert" the parameter-data relationship between p and d:

 $f_{\mathcal{P}|\mathcal{D}}(\boldsymbol{p}|\boldsymbol{d}_{\mathrm{obs}}) \propto f_{\mathcal{D}|\mathcal{P}}(\boldsymbol{d}_{\mathrm{obs}}|\boldsymbol{p})f_{\mathcal{P}}(\boldsymbol{p})$

 $f_{\mathcal{P}}(\boldsymbol{p})$: probability density describing prior information on \boldsymbol{p} $f_{\mathcal{D}|\mathcal{P}}(\boldsymbol{d}|\boldsymbol{p})$: probability density describing the effect of the forward problem (probability density describing modeling and measurement uncertainties)

 $f_{\mathcal{P}|\mathcal{D}}(\boldsymbol{p}|\boldsymbol{d}_{obs})$: probability density on \boldsymbol{p} given \boldsymbol{d} (defines a solution of the inverse problem)

• Estimators on p extracted by post-processing $f_{P|D}(p|d_{obs})$. In particular:

 $p_{MAP} = \arg \max_{p} f_{\mathcal{P}|\mathcal{D}}(p|d_{obs})$ Maximum a posteriori estimate

Main focus of e.g. Tarantola's first book on inverse problems (1987)

Introduction

PDE-constrained optimization, general considerations

• Forward solution u and parameter p linked by ODE/PDE model E(p, u) = 0:

seek p solving $\min_{p,u} J(p,u)$ s.t. E(p,u) = 0 (and possibly $u \in \mathcal{U}_{adm}, p \in \mathcal{P}_{adm} \dots$)

• Assume (usually) E(p, u) = 0 solvable for u given p (can be subject to admissibility constraints on p):

u implicit function of p through E(p, u) = 0: (often-nonlinear) solution mapping $p \mapsto u(p)$

Reduced objective and minimization:

$$\min_{p \in \mathcal{P}_{adm}} \widehat{J}(p) := J(p, u(p))$$

- Iterative optimization algorithms, compute minimizing sequence p_n → p
 Need (at least) evaluation of each J(p_n); requires u_n = u(p_n) via PDE solve.
- Optimization algorithms using evaluations of ∇Ĵ (sometimes ∇∇Ĵ) avoid excessive number of (costly) PDE solves. Descent directions usually defined using full gradient ∇Ĵ.
- (KKT) optimality conditions (basis of some algorithms) expressed with derivatives of J, E.
- Numerical derivatives of \widehat{J} for *P*-dim. parameter approximation $p \in \text{span}(\pi_1, \dots, \pi_P)$, e.g.:

$$abla \widehat{J}(p) pprox \Big(rac{\widehat{J}(p+h\pi_1) - \widehat{J}(p)}{h}, \ldots, rac{\widehat{J}(p+h\pi_P) - \widehat{J}(p)}{h} \Big) \qquad h: ext{ small step}$$

Total evaluation cost for $\widehat{J}(p)$, $\nabla \widehat{J}(p)$: P+1 PDE solves (at least once per optim. iteration).

• Can be greatly improved: analytical sensitivity or (better still) adjoint solution methods

A few words about derivatives

Derivative

Let $f : \mathcal{X} \to \mathcal{Y}$ (\mathcal{X}, \mathcal{Y} normed vector spaces). If $f(a+h) = f(a) + f'(a)h + o(||h||_{\mathcal{X}})$ with linear continuous operator $f'(a) \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, we say that f'(a) is the (Fréchet) derivative of f at a.

- Finite-dim. case: f'(a) Jacobian matrix of f at a;
- $\mathcal{Y} = \mathbb{R}$: f'(a) is a continuous linear functional, $f'(a)h = \langle f'(a), h \rangle (\langle \cdot, \cdot \rangle \text{ duality bracket});$
- $\mathcal{Y} = \mathbb{R}$ and \mathcal{X} Hilbert: there is $g(a) \in \mathcal{X}$ (gradient of f at a) such that $f'(a)h = (g(a), h)_{\mathcal{X}}$

• If f multivariate, e.g. $(x, y) \mapsto f(x, y)$, we write

 $f(a+h,b+k) = f(a,b) + \partial_x f(a)h + \partial_y f(b)k + o(||(h,k)||)$

First-order KKT conditions (equality constraint)

Let (p, u) verify E(p, u) = 0 and $\partial_u E(p, u)$ linear continuous with bounded inverse. Assume \hat{J} has a local extremum at p. Then, there exists $\lambda = \lambda(p, u)$ such that

 $\partial_{\lambda}\mathcal{L}(\boldsymbol{p},\boldsymbol{u},\lambda)=0,\quad\partial_{\boldsymbol{u}}\mathcal{L}(\boldsymbol{p},\boldsymbol{u},\lambda)=0,\quad\partial_{\boldsymbol{p}}\mathcal{L}(\boldsymbol{p},\boldsymbol{u},\lambda)=0,$

where $\mathcal{L}(p, u, \lambda) := J(p, u) + \langle E(p, u), \lambda \rangle$ is the Lagrangian associated with the constrained optimization problem.

1. Introduction

2. Time-independent case

- 3. Linear time-dependent case
- 4. Second-order derivatives
- 5. Topological derivatives for qualitative inverse scattering
- 6. Closing remarks

Reduced objective derivative using state sensitivities

 $\min_{p\in\mathcal{P}, u\in\mathcal{U}} J(p, u) \text{ subject to } E(p, u) = 0$

Let p, u verify E(p, u) = 0 (i.e. u = u(p)). Assume ∂_uE(p, u(p)) ∈ L(U,U') invertible with bounded inverse. By implicit function thm., u(·) differentiable at p and

 $\partial_u E(p, u) u'(p) + \partial_p E(p, u) = 0$

To compute u'(p)q for given $q \in \mathcal{P}$: solve $\partial_u E(p, u)[u'(p)q] = -\partial_p E(p, u)q$.

- Then, differentiation of reduced objective $\widehat{J} = J(u(\cdot), \cdot)$ at p yields $\widehat{J}'(p)q = \partial_u J(p, u) u'(p)q + \partial_p J(p, u)q$
- For P-dim. parameter approximation p ∈ span(π₁,...,π_P):

 $\boldsymbol{\nabla}\widehat{J}(\boldsymbol{p}) = \left(\widehat{J}'(\boldsymbol{p})\pi_1,\ldots,\widehat{J}'(\boldsymbol{p})\pi_P\right)^{\mathsf{T}}$

A priori entails solving P sensitivity problems:

 $\widehat{J}'(p)\pi_k = \partial_u J(p, u) \, u'(p)\pi_k + \partial_p J(p, u)\pi_k,$

with $\partial_u E(p, u) u'(p) \pi_k = -\partial_p E(p, u) \pi_k$ $(1 \le k \le P)$

- Descent directions require the full gradient, e.g. $d = -\mathbf{H} \cdot \nabla \widehat{J}(p)$ using quasi-Newton
- Adjoint solution method: provides $\nabla \widehat{J}(p)$ without actually solving sensitivity problems

Adjoint solution method: basic mechanism

Adjoint solution method: provides $\nabla \widehat{J}(p)$ without actually solving sensitivity problems

$$\widehat{I}'(p)\pi_k = \partial_u J(p,u) \, u'(p)\pi_k + \partial_p J(p,u)\pi_k,$$

with $\partial_u E(p, u)u'(p)\pi_k = -\partial_p E(p, u)\pi_k$ $(1 \le k \le P)$

i.e. $\widehat{J}'(p)\pi_k = g v_k + \partial_p J(p, u)\pi_k$, with $Av_k = f_k$ $(1 \le k \le P)$

- Basic task: to evaluate one linear functional $\langle g, v_k \rangle$ on (possibly infinitely) many v_k solving $Av_k = f_k$.
- Associate adjoint solution λ to g by $A^*\lambda = g$, use transposition ($\langle x, Ay \rangle = \langle A^*x, y \rangle$):

 $\langle g, v_k \rangle = \langle A^* \lambda, v_k \rangle = \langle \lambda, A v_k \rangle = \langle \lambda, f_k \rangle$ $\langle g, v_k \rangle = \langle \lambda, f_k \rangle$ for all k

Reduced objective derivative using adjoint solution

- In present context (with $q = \pi_1, ..., \pi_P$ for the discrete gradient): $g = -\partial_u J(p, u), v_k = u'(p)q, f_k = -\partial_p E(p, u)q, q \in P$ arbitrary.
- Revisit reduced objective derivative evaluation using adjoint solution:

$$\begin{split} \hat{I}'(p)q &= -\langle \partial_u J(p,u), \left[\partial_u E(p,u) \right]^{-1} \partial_p E(p,u)q \rangle_{\mathcal{U}',\mathcal{U}} + \partial_p J(p,u)q \\ &= \langle \underbrace{-\left[\partial_u E(p,u) \right]^{-\star} \partial_u J(p,u)}_{\lambda}, \partial_p E(p,u)q \rangle_{\mathcal{U}',\mathcal{U}} + \partial_p J(p,u)q \end{split}$$

The adjoint solution $\lambda \in \mathcal{U}$ solves $[\partial_u E(p, u)]^* \lambda = -\partial_u J(p, u)$. Then, for any $q \in \mathcal{P}$: $\widehat{J}'(p)q = \langle \lambda, \partial_p E(p, u)q \rangle_{\mathcal{U}', \mathcal{U}} + \partial_p J(p, u)q$ i.e.

• Same result on $\widehat{J}'(p)$ found using Lagrangian $\mathcal{L}(p, u, \lambda) := J(p, u) + \langle E(p, u), \lambda \rangle$: $\widehat{J}'(p)q = \partial_p \mathcal{L}(p, u(p), \lambda(p))q$

with forward and adjoint problems coinciding with first two KKT conditions

 $\partial_{\lambda}\mathcal{L}(\boldsymbol{p},\boldsymbol{u},\lambda)=0,\quad\partial_{\boldsymbol{u}}\mathcal{L}(\boldsymbol{p},\boldsymbol{u},\lambda)=0.$

Third(remaining) KKT condition in the form ∂_pL(p, u(p), λ(p)) = 0: 1st order stationarity condition for unconstrained minimization of Ĵ(p).

Example: inverse conductivity (EIT) problem

Forward problem: find electrostatic potential u in Ω given source f and conductivity σ

• Inverse problem: estimate σ from measurements u^{m} of u on Γ . Optimization approach: regularized output least-squares with PDE constraint linking u to σ

 $\min_{\sigma, u} \overline{J(\sigma, u)} \quad \text{subject to } E(\sigma, u) = 0 \quad \text{e.g. } J(\sigma, u) = \frac{1}{2} \int_{\Gamma} |u - u^{\mathsf{m}}|^2 \, \mathrm{d}S + \alpha R(\sigma)$

Often additional inequality constraints (mostly left out in this talk), e.g. $\sigma \geq \sigma_0, \sigma \in \mathcal{K} \dots$

Linear PDE constraint in weak form

 $\min_{p\in\mathcal{P}, u\in\mathcal{U}}J(p,u) \qquad \text{subject to} \qquad A(p,u,w)-F(w)=0 \quad \text{for all } w\in\mathcal{U}$

where $A(p, \cdot, \cdot)$ bilinear, continuous form, and thus $\partial_u A(p, u, w)z = A(p, z, w)$.

 Variational formulations for state sensitivity and adjoint problems: A(p, u'(p)q, w) = -∂_pA(p, u, w)q ∀w ∈ U (sensitivity) A(p, w, λ) = -∂_uJ(p, u)w ∀w ∈ U (adjoint)

 Combine with w = -λ and w = u'(p)q: -A(p, u'(p)q, λ) = ∂_pA(p, u, λ)q A(p, u'(p)q, λ) = -∂_uJ(p, u)u'(p)q

The adjoint solution $\lambda \in \mathcal{U}$ solves $A(p, w, \lambda) = -\partial_u J(p, u) w \quad \forall w \in \mathcal{U}$. Then, for any $q \in \mathcal{P}$: $\widehat{J}'(p)q = \partial_p A(p, u, \lambda)q + \partial_p J(p, u)q$ i.e. $\widehat{J}'(p) = \partial_p A(p, u, \lambda) + \partial_p J(p, u)$

Inverse conductivity pb.: $p = \sigma$, $A(\sigma, u, w)$ trilinear and $J'(u)w = \int_{\Gamma_N} (u - u^m)w \, dS$, hence $A(\sigma, u'(\sigma)s, w) = -A(s, u, w) \quad \forall w \in \mathcal{U}$ (sensitivity) $A(\sigma, w, \lambda) = -((u - u^m), w)_{\Gamma_N} \quad \forall w \in \mathcal{U}$ (adjoint) $\widehat{J'}(\sigma)s = \int_{\Omega} s \nabla u(\sigma) \cdot \nabla \lambda(\sigma) \, dV + \alpha R'(\sigma)s$

1. Introduction

- 2. Time-independent case
- 3. Linear time-dependent case
- 4. Second-order derivatives
- 5. Topological derivatives for qualitative inverse scattering
- 6. Closing remarks

Example: diffusivity identification for the heat equation

• Forward problem: find temperature u in Ω given source f and diffusivity σ

Variational formulation, $\mathcal{U} = H^1([0, T] \times \Omega)$:

Find
$$u \in \mathcal{U}$$
,
$$\begin{cases} (\partial_t u, w)_{\Omega} + A(\sigma, u, w) - F(w) = 0 & t \in [0, T] \\ u(\cdot, 0) = 0 & \text{in } \Omega \end{cases} \text{ for all } w \in H^1(\Omega)$$

• Inverse problem: estimate σ from measurements u^m of u on $\Gamma \times [0, T]$.

$$\min_{\sigma,u} J(\sigma, u) \qquad \text{s.t. } E(\sigma, u) = 0 \qquad \text{e.g. } J(\sigma, u) = \frac{1}{2} \int_0^T \int_{\Gamma} |u - u^m|^2 \, \mathrm{d}S \, \mathrm{d}t + \alpha R(\sigma).$$

Same general approach for full-waveform inversion (FWI, geophysics) and many other cases.

Adjoint solution, heat equation example

• Variational formulations for the (forward) sensitivity and (backward) adjoint problems:

$$\begin{aligned} & \text{Find } u' = u'(\sigma)s \in \mathcal{U}, \quad \begin{cases} \left(\partial_t u', w\right)_{\Omega} + A(\sigma, u', w) = -A(s, u, w) & t \in [0, T] \quad \forall w \in H^1(\Omega) \\ & u'(\cdot, 0) = 0 & \text{in } \Omega \end{cases} \\ & \text{Find } \lambda \in \mathcal{U}, \qquad \begin{cases} -\left(w, \partial_t \lambda\right)_{\Omega} + A(\sigma, w, \lambda) = -\left(u - u^m, w\right)_{\Gamma} & t \in [0, T] \quad \forall w \in H^1(\Omega) \\ & \lambda(\cdot, T) = 0 & \text{in } \Omega \end{cases} \end{aligned}$$

• Set $w = \lambda$, w = -u', integrate over [0, T], combine, use initial/final conditions:

$$\begin{cases} (\partial_t u', \lambda)_{\Omega} + A(\sigma, u', \lambda) = -A(s, u, \lambda) \\ (u', \partial_t \lambda)_{\Omega} - A(\sigma, u', \lambda) = (u - u^m, u')_{\Gamma} \end{cases} \\ \implies \int_0^T (u - u^m, u')_{\Gamma} dt - \int_0^T A(s, u, \lambda) dt = \int_0^T \partial_t (u', \lambda)_{\Omega} dt = 0 \\ \partial_t J(\sigma, u) u' = \int_0^T A(s, u, \lambda) dt \end{cases}$$

$$\partial_u J(\sigma, u) u' = \int_0^T A(s, u, \lambda) dt$$

$$\widehat{J}'(\sigma)s = \partial_u J(\sigma, u)u'(\sigma)s + \partial_\sigma J(\sigma, u) = \int_0^T A(s, u, \lambda) dt + \alpha R'(\sigma)s$$

Additional considerations

Find
$$\lambda \in \mathcal{U}$$
,
$$\begin{cases} -(w, \partial_t \lambda)_{\Omega} + A(\sigma, w, \lambda) = -(u - u^m, w)_{\Gamma} & t \in [0, T] \quad \forall w \in H^1(\Omega) \\ \lambda(\cdot, T) = 0 & \text{in } \Omega \end{cases}$$

- Time-backward adjoint solution with final condition.
 Solving adjoint problem requires forward solution over whole duration [0, T] (here), at final time (occasionally).
- In general, gradient evaluation needs forward and adjoint solutions over whole duration [0, Τ].
- Can cause significant memory problems in large-scale applications. Mitigation includes
 - \triangleright treating [0, T] piecewise and recomputing parts of forward history.
 - ▷ "parareal" method [P.L. Lions, Y. Maday, G. Turini 01]
- Same result on $\widehat{J'}(y)$ by 1st order stationarity conditions $\partial_{\lambda}\mathcal{L} = 0$, $\partial_{u}\mathcal{L} = 0$ of Lagrangian

$$\mathcal{L}(\sigma, u, \lambda) := J(\sigma, u) + \int_0^T \left\{ \left(\partial_t u, \lambda \right)_{\Omega} + A(\sigma, u, \lambda) - F(\lambda) \right\} dt$$

• Time reversal $t = T - \tau$ yields adjoint problem as IVP for the heat eq.

Find
$$\lambda \in \mathcal{U}$$
,
$$\begin{cases} \left(w, \partial_t \lambda\right)_{\Omega} + A(\sigma, w, \lambda) = -\left((u - u^m)(T - \cdot), w\right)_{\Gamma} & \tau \in [0, T] \quad \forall w \in H^1(\Omega) \\ \lambda(\cdot, 0) = 0 & \text{in } \Omega \end{cases}$$

and time convolution form of the objective function derivatives

Adjoint-then-discretize, or vice versa

Discretized setting of constrained optimization problem, time-dependent example:

• Objective function:

$$J(\sigma) = J(\sigma, u_1, \dots, u_N)$$
$$\hat{J}'(\sigma)s = \partial_{\sigma}J(\sigma, u_1, \dots, u_N)s + \sum_{n=1}^N \partial_{u_n}J(\sigma, u_1, \dots, u_N)u'_n(\sigma)s$$

- Forward problem with backward Euler (implicit) time stepping, $h := \Delta t$: $Mu_0 = 0$, $(M + hK(\sigma))u_{n+1} = Mu_n + F_{n+1}$ n = 0, 1, ..., N-1
- Forward sensitivity problem:

$$Mu'_{0} = 0, \quad (M + hK(\sigma))u'_{n+1} = Mu'_{n} - hK(s)u_{n+1}$$
 $n = 0, 1, ..., N-1$ (S_n)

• Adjoint problem (can be found from relevant Lagrangian):

$$M\lambda_N = 0, \quad (M + hK(\sigma))\lambda_n = M\lambda_{n+1} - \partial_{u_{n+1}}J(\sigma, \ldots)s \qquad n = N - 1, \ldots, 0 \qquad (\mathcal{A}_n)$$

• Combine, use initial and final conditions:

$$\sum_{n=0}^{N-1} \left\{ \lambda_n^{\mathsf{T}}(\mathcal{S}_n) - u_{n+1}^{\prime \mathsf{T}}(\mathcal{A}_n) \right\} = \sum_{n=1}^{N} \left\{ \partial_{u_n} J(\sigma, u_1, \ldots, u_N) u_n^{\prime}(\sigma) s - h \lambda_{n-1}^{\mathsf{T}} \mathcal{K}(s) u_n \right\}$$

Objective function derivatives using discrete adjoint method:

$$\widehat{J}'(\sigma)s = \partial_{\sigma}J(\sigma, u_1, \dots, u_N)s + h\sum_{n=1}^{N}\lambda_{n-1}^{\mathsf{T}}K(s)u_n$$

1. Introduction

- 2. Time-independent case
- 3. Linear time-dependent case

4. Second-order derivatives

- 5. Topological derivatives for qualitative inverse scattering
- 6. Closing remarks

Second-order derivatives

Minimization under linear PDE constraint:

 $\min_{p,u} J(p,u) \quad \text{s.t.} \quad A(p,u,w) - F(w) = 0 \text{ for all } w \in \mathcal{U}$

- Second-order derivative $\widehat{J}''(p)(q,r)$ of $\widehat{J}(p) := J(u(p))$? Useful e.g. to
 - ▷ Find *q* solving $\widehat{J}''(p)(q,r) + \widehat{J}'(p)r = 0$ for all *r* (Newton step / descent dir. based on $\partial_p \widehat{J}(p) = 0$, minimize quadratic approx. of $\widehat{J}_{...}$)
 - $\triangleright~$ Evaluate / check second-order optimality conditions
- Main idea: differentiate first-order derivative. Adjoint-solution approach (for J = J(u)) gives

 $\widehat{J}'(p)r = -\partial_p A(p, u(p), \lambda(p))r$

Then

 $\widehat{J}'(p)(q,r) = -\partial_p A(p,u'(p)q,\lambda(p))r - \partial_p A(p,u(p),\lambda'(p)q)r - \partial_{pp} A(p,u(p),\lambda(p))(q,r)$ with the forward and adjoint solution derivatives u' and λ' satisfying

$$\begin{split} &A\big(u'(p)q,w,p\big) = -\partial_p A\big(u(p),w,p\big)q & \text{for all } w \in \mathcal{U} \\ &A\big(w,\lambda'(p)q,p\big) = -\partial_p A\big(u(p),w,p\big)q & \text{for all } w \in \mathcal{U} \end{split}$$

For *P*-dim. parameter approximation setting:

 $\triangleright \text{ Evaluation of } \widehat{J}''(p)(q,\cdot): \text{ needs } u(p), \lambda(p), u'(p)q, \lambda'(p)q \qquad (4 \text{ solutions})$

▷ Evaluation of $\hat{J}'(p)$: needs $u(p), \lambda(p)$, and $u'(p)r, \lambda'(p)r$ for all r (2 + 2P solutions)

Method used e.g. in full-waveform inversion [Metivier et al. 2012].

1. Introduction

- 2. Time-independent case
- 3. Linear time-dependent case
- 4. Second-order derivatives

5. Topological derivatives for qualitative inverse scattering

6. Closing remarks

Wave-based identification

• Standard approach: PDE-constrained minimization of (e.g. output least-squares) cost functional:

$$\min_{B} \mathcal{J}(B), \quad \text{e.g. } \mathcal{J}(B) := J(u_{\text{B}}) = \frac{1}{2} \int_{M} \left| u_{\text{B}} - u_{\text{obs}} \right|^2 \mathrm{d}M$$

Entails repeated evaluations of forward (and adjoint if gradient-based) solutions $u_{\rm B}$

- Impetus for development of non-iterative, qualitative, sampling-based identification. General idea: focus on finding the support of B, define a function φ to determine whether z ∉ B or z ∈ B based on value φ(z) at sampling points z.
 - Linear sampling method (Colton, Kirsch '96), factorization method (Kirsch'98) Mathematically well-justified; require abundant data
 - Topological derivative (this talk):

Conditional partial mathematical justification so far; any overdetermined data

A Qualitative Approach to Inverse Scattering Theory (F. Cakoni, D. Colton, 2014)

Topological derivative concept (topology optimization)

TD: sensitivity analysis tool [Eschenauer et al 94; Sokolowski, Zochowski 99; Garreau et al 01...]

• Initially introduced and applied for topology optimization

 Later proved useful also for qualitative flaw identification PhD G. Delgado (2014), adv. G. Allaire — Topology optimization combining topological and shape derivatives

Topological derivative concept (conducting inclusion identification)

• Objective functional (as example): $\widehat{J}(D) = J(u_D) = \frac{1}{2} \int_{\Omega D} |u_D - u^m|^2 dS$

• Consider small trial penetrable inclusion D_{ε}

- u: background, u_D : (true or trial) object D, u_{ε} : small trial object D_{ε}
 - J has expansion $J(u_{\varepsilon}) = J(u) + \varepsilon^{d} \mathcal{T}(z) + o(\varepsilon^{d})$.
 - *T*(z) = *T*(z; *D*, σ, Δσ): topological derivative (TD) of J at z ∈ Ω.

 $D_r(\sigma + \Delta \sigma)$

TD as imaging functional for qualitative flaw identification

- Connects qualitative inverse scattering to PDE-constrained approaches
 - > Framework allowing to use any available data
 - Most developments to date in connection with (acoustic, elastodynamic, electromagnetic) linear wave models
 - Bounded or unbounded propagation domains
- Many empirical validations of this heuristic even for macroscopic defects
 - using synthetic data (many references)
 - ▷ using experimental data [Tokmashev, Tixier, Guzina 2013].
 - ▷ simplified variants, experimental data [Dominguez et al. 2005, Rodriguez et al. 2014].
- Heuristic proved in some cases:
 - Far-field data, medium perturbation in zeroth-order PDE term, "moderate" scatterers [Bellis, B, Cakoni 2013],
 - near-field data, medium perturbation in leading-order PDE term, "moderate" scatterers [B, Cakoni 2019; B. 2022],
 - ▷ small obstacles [Ammari et al. 2012, Wahab 15],
- High-frequency behavior [Guzina, Pourahmadian 2015] (TD emphasizes boundaries).
- Usually want to compute the field $z \mapsto \mathcal{T}(z) \implies$ Purely numerical evaluation impractical
- Analytical TD formulas rely on asymptotic approximation of u_{ε} . Several approaches, e.g.:
 - ▷ Isolate finite region $C \subset \Omega$ around $D_{\varepsilon}(z)$, asymptotic form of DtN on ∂C
 - ▷ Find asymptotic form of shape derivative (homothetic dilatation of D_{ε}) as $\varepsilon \to 0$;
 - ▷ Find asymptotic form of (volume or boundary) integral equation (this lecture)

Topological derivative: evaluation using adjoint solution

Focus here on medium perturbations in leading-order PDO term

- $\mathcal{T}(z)$ found as leading-order contribution in $J'(u)(u_{\varepsilon}-u)$ as $\varepsilon \to 0$
- Variational formulations for background, perturbed and adjoint solutions: $A(u, w) = F(w) \quad \forall w \in \mathcal{U}$ (background)

$$\begin{split} \left(\Delta \sigma \boldsymbol{\nabla} \boldsymbol{u}_{\varepsilon}, \boldsymbol{\nabla} \boldsymbol{w} \right)_{D_{\varepsilon,z}} + A(\boldsymbol{u}_{\varepsilon}, \boldsymbol{w}) &= F(\boldsymbol{w}) \quad \forall \boldsymbol{w} \in \mathcal{U} \qquad \text{(perturbed)} \\ A(\boldsymbol{w}, \boldsymbol{\lambda}) &= J'(\boldsymbol{u}) \boldsymbol{w} \quad \forall \boldsymbol{w} \in \mathcal{U} \qquad \text{(adjoint)} \end{split}$$

• Combine with
$$w = \lambda, -\lambda, u_{\varepsilon} - u$$
:

$$\left. \begin{array}{c} A(u,\lambda) = F(\lambda) \\ -(\Delta\sigma\nabla u_{\varepsilon},\nabla\lambda)_{D_{\varepsilon,z}} - A(u_{\varepsilon},\lambda) = -F(\lambda) \\ A(u_{\varepsilon}-u,\lambda) = J'(u)(u_{\varepsilon}-u) \end{array} \right\}$$

$$\partial_{u}J(u)(u_{\varepsilon}-u) = -(\Delta\sigma \nabla u_{\varepsilon}, \nabla \lambda)_{D_{\varepsilon,z}}$$

• Use $\nabla \lambda = \nabla \lambda(z) + o(1)$ and (known) asymptotic approximation in $D_{\varepsilon,z}$ of the form

$$\begin{cases} u_{\varepsilon}(\mathbf{x}) = u(\mathbf{z}) + \varepsilon \mathbf{U}(\mathbf{x}/\varepsilon) \cdot \nabla u(\mathbf{z}) + o(\varepsilon) \\ \nabla u_{\varepsilon}(\mathbf{x}) = \nabla \mathbf{U}(\mathbf{x}/\varepsilon) \cdot \nabla u(\mathbf{z}) + o(1) \end{cases} \quad \text{in } D_{\varepsilon,z} \quad \left(\mathbf{U} = \mathbf{U}(\cdot; \mathcal{D}, \sigma, \Delta \sigma)\right)$$

Topological derivative:

$$J(u_{\varepsilon}) = J(u) + \varepsilon^{d} \mathcal{T}(z) + o(\varepsilon^{d}) \quad \text{with} \quad \overline{\mathcal{T}(z) = -\nabla u(z) \cdot \mathbf{A} \cdot \nabla \lambda(z)}$$
$$\mathbf{A} = \mathbf{A}(\mathcal{D}, \sigma, \Delta \sigma) = \int_{\mathcal{D}} \Delta \sigma \nabla \boldsymbol{U} \, \mathrm{d} V: \text{ polarization tensor (known analytically for simple } \mathcal{D})$$

Topological derivative: evaluation using adjoint solution

 $J(u_{\varepsilon}) = J(u) + \varepsilon^{d} \mathcal{T}(z) + o(\varepsilon^{d}) \quad \text{with} \quad \mathcal{T}(z) = -\nabla u(z) \cdot \mathbf{A} \cdot \nabla \lambda(z)$

- In practice: (i) compute background and adjoint solutions, (ii) evaluate $z\mapsto \mathcal{T}(z)$
- Similar TD formulas in other cases (Maxwell, elasticity, time-harmonic or transient waves...)
- Computation of the TD field:
 - Background and adjoint solutions u, \hat{u} defined on same (reference) configuration \implies Evaluation of \hat{u} and \mathcal{T} at moderate extra cost
 - Computation of $\mathcal{T}(z)$ straightforward with standard methods (FEM, BEM...)
 - Experimental information exploited via the adjoint solution \hat{u}
- Corresponding results available in many other cases, e.g.
 - Potential problems, elasticity: B, Delgado (2014); Delgado, B (2015); Garreau, Guillaume, Masmoudi (2001); Novotny et al. (2003); Sokolowski, Zochowski (2001); Vogelius, Volkov (2000); Schneider, Andrä (2013);
 - Acoustics: Feijoo (2004); Guzina, B (2006); Nemitz, MB (2008)
 - Electromagnetism: Masmoudi, Pommier, Samet (2005);
 - Elastodynamics: Guzina, B (2004); Guzina, Chikichev (2007); Bellis, Impériale (2013)
 - Time domain: Dominguez, Gibiat, Esquerré (2005); B (2006); Amstutz, Takahashi, Wexler (2008); Tokmashev, Tixier, Guzina (2013)
 - Cracks: Amstutz, Horchani, Masmoudi (2005); Bellis, B (2012); B (2011)
 - Image processing: Auroux, Jaafar Belaid, Rjaibi (2010); Larnier, Masmoudi (2013)
 - Related imaging functionals: Rodriguez, Sahuguet, Gibiat, Jacob (2012)

 x_1

Example: FEM-based computation of T (2D time-domain wave eqn.)

Identification of impenetrable scatterer(s) in 2-D acoustic medium.

• Normalized scalar wave equation $\Delta u_{\rm P}^{(k)} - \partial_{tt} u_{\rm P}^{(k)} = 0$

 $\partial_n u_{\mathsf{B}}^{(k)} = \begin{cases} 1 & (\text{on } S_k) \\ 0 & (\text{on } S_j, \ j \neq k) \end{cases} \quad \partial_n u_{\mathsf{B}}^{(k)} = 0 \quad (\text{on } \partial B)$

- Matlab (very simple) implementation, T3 elements.
- Newmark time-marching $(\beta = \frac{1}{4}, \gamma = \frac{1}{2})$, inconditionally stable)
- $M = S_1 \cup S_2 \cup S_3 \cup S_4$ (simulated measurements for $0 \le t \le T$)

$$\mathcal{J}^{(k)}(B) = \frac{1}{2} \int_0^T \int_{S_1 + S_2 + S_3 + S_4} |u_{\rm B}^{(k)} - u_{\rm obs}^{(k)}|^2 \,\mathrm{d}s \,\mathrm{d}t$$

Computation of $u^{(k)}$ and $\hat{u}^{(k)}$

Computation of synthetic data $u_{obs}^{(k)}$

M. Bonnet (POems, ENSTA)

Bellis, B. Int. J. Solids Struct. (2010)

FEM-based computation of \mathcal{T} : identification of a single scatterer

M. Bonnet (POems, ENSTA)

Bellis, B. Int. J. Solids Struct. (2010)

FEM-based computation of \mathcal{T} : identification of a single scatterer

Bellis, B, Int. J. Solids Struct. (2010)

M. Bonnet (POems, ENSTA)

Adjoint solution method for inverse and optimization

FEM-based computation of \mathcal{T} : identification of a single scatterer

M. Bonnet (POems, ENSTA)

Adjoint solution method for inverse and optimization

FEM-based computation of T: simultaneous identification of a multiple scatterer

 $k = 1, 2, 3, 4, T = 2, \alpha = 0.5$

Example: Imaging of interface cracks (3-D transient elasticity, FEM)

- FEM-based time domain 3D simulations in *stiff/soft* bi-material domain
- Gaussian time distribution of compressional loading on top face
- Adimensionalization w.r.t. longitudinal wave velocity, T = 1
- Observation on top face

• Topological derivative $\mathbb{T}(\cdot, \mathcal{T}) \leqslant 0$ at interface

- Extension to multilayered domains
- Study of other type of interface, e.g. fiber reinforced composites

Experimental study (Tokmashev, Tixier, Guzina 2013)

Figure 2. Three-dimensional motion sensing via laser Doppler vibrometer (LDV) system.

Figure 4. Testing configuration: (a) photograph of the damaged plate, and (b) boundary conditions and spatial arrangement of the LDV scan points for five individual source locations $(S_{\rm pero}^{\rm scan}, k=1, \overline{5})$.

Topological derivative $\boldsymbol{z} \mapsto \mathcal{T}(\boldsymbol{z})$ for $J(\boldsymbol{u}_D) = \frac{1}{2} \int_0^T \int_S |\boldsymbol{u}_D - \boldsymbol{u}^m|^2 \, \mathrm{d}S \, \mathrm{d}t$

1. Introduction

- 2. Time-independent case
- 3. Linear time-dependent case
- 4. Second-order derivatives
- 5. Topological derivatives for qualitative inverse scattering
- 6. Closing remarks

Closing remarks

Closing remark: different derivatives but same adjoint solution

- Assume fixed basic setting (physical configuration, objective function).
 - e.g. conductivity problem with objective function $J(u) = \frac{1}{2} \int_{\Omega} |u u^m|^2 dS$

Adjoint solution λ only depends on (choice of) J. Here:

▷ Material parameter perturbation ($\sigma \rightarrow \sigma + s$):

$$\widehat{J}(\sigma+s) - \widehat{J}(\sigma) = \int_{\Omega} s \nabla u \cdot \nabla \lambda \, \mathrm{d}V + o(\|s\|)$$

 \triangleright Inclusion shape perturbation $(D \rightarrow D + \theta(D))$:

$$\widehat{J}(D+\theta(D)) - \widehat{J}(D) = \int_{\partial D} \Delta \sigma(\nabla_{S} u \cdot \nabla_{S} \lambda) \theta \cdot \mathbf{n} \, \mathrm{d}V + o(||\theta||)$$

- ▷ Topology change via small-inclusion nucleation $(\emptyset \to D_{\varepsilon,z}(\Delta\sigma))$: $\widehat{J}(D_{\varepsilon,z}) - \widehat{J}(\emptyset) = \varepsilon^d \nabla u(z) \cdot \mathbf{A}(\mathcal{D}, \sigma, \Delta\sigma^*) \cdot \nabla \lambda(z) + o(||\varepsilon^d||)$
- Formulas are bilinear in same (forward and adjoint) solutions, differ in details.
- One adjoint solution per objective function, applies (even simultaneously) to all types of sensitivity

See e.g. Céa, Garreau, Guillaume, Masmoudi 2000

Thank you for listening! Any questions?