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Introduction

Optimization and inversion based on physical ODE/PDE models

• Optimization (inverse, optimal control. . . ) problems based on PDE/ODE models arise in
many areas of science and engineering

• Often, find some parameter, control variable. . . given data or target on state variable(s)
• Widespread use of PDE-constrained optimization. Possibly most well-known use:

full-waveform inversion (FWI) in geophysics
• Includes optimization problem yielding MAP (Bayesian) estimates
• Includes treatment of constitutive identification using error in constitutive relation (my last

two talks)

S. Kurtz, PhD 2023
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Introduction

Bayesian solution approach (Angèle’s talks), short reminder

• Definition of a conditional probability P(A|B):

P(A|B) =
P(A∩B)

P(B)

P(A∩B) = P(B∩A) (symḿetry) yields Bayes’ formula:

P(A|B)P(B) = P(B|A)P(A)

• Idea: use Bayes to “invert” the parameter-data relationship between p and d :

fP|D(p|d obs) ∝ fD|P (d obs|p)fP (p)

fP (p): probability density describing prior information on p
fD|P (d |p): probability density describing the effect of the forward problem

(probability density describing modeling and measurement uncertainties)

fP|D(p|d obs): probability density on p given d
(defines a solution of the inverse problem)

• Estimators on p extracted by post-processing fP|D(p|d obs). In particular:

pMAP = arg max
p

fP|D(p|d obs) Maximum a posteriori estimate

Main focus of e.g. Tarantola’s first book on inverse problems (1987)
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Introduction

PDE-constrained optimization, general considerations

• Forward solution u and parameter p linked by ODE/PDE model E(p, u) = 0:

seek p solving min
p,u

J(p, u) s.t. E(p, u) = 0 (and possibly u ∈Uadm, p ∈Padm . . .)

• Assume (usually) E(p, u) = 0 solvable for u given p (can be subject to admissibility
constraints on p):
u implicit function of p through E(p, u) = 0: (often-nonlinear) solution mapping p 7→ u(p)

Reduced objective and minimization: min
p∈Padm

Ĵ(p) := J
(
p, u(p)

)
• Iterative optimization algorithms, compute minimizing sequence pn → p

Need (at least) evaluation of each Ĵ(pn); requires un = u(pn) via PDE solve.

• Optimization algorithms using evaluations of ∇Ĵ (sometimes ∇∇Ĵ) avoid excessive number

of (costly) PDE solves. Descent directions usually defined using full gradient ∇Ĵ.

• (KKT) optimality conditions (basis of some algorithms) expressed with derivatives of J,E .

• Numerical derivatives of Ĵ for P-dim. parameter approximation p ∈ span(π1, . . . , πP), e.g.:

∇Ĵ(p) ≈
( Ĵ(p+hπ1)− Ĵ(p)

h
, . . . ,

Ĵ(p+hπP)− Ĵ(p)

h

)
h: small step

Total evaluation cost for Ĵ(p), ∇Ĵ(p): P+1 PDE solves (at least once per optim. iteration).

• Can be greatly improved: analytical sensitivity or (better still) adjoint solution methods
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Introduction

A few words about derivatives

Derivative

Let f : X → Y (X ,Y normed vector spaces). If f (a+h) = f (a) + f ′(a)h + o(∥h∥X ) with linear

continuous operator f ′(a) ∈ L(X ,Y), we say that f ′(a) is the (Fréchet) derivative of f at a.

• Finite-dim. case: f ′(a) Jacobian matrix of f at a;

• Y = R: f ′(a) is a continuous linear functional, f ′(a)h =
〈
f ′(a), h

〉
(
〈

• , •
〉
duality bracket);

• Y = R and X Hilbert: there is g(a) ∈ X (gradient of f at a) such that f ′(a)h =
(
g(a), h

)
X

• If f multivariate, e.g. (x , y) 7→ f (x , y), we write

f (a+h, b+k) = f (a, b) + ∂x f (a)h + ∂y f (b)k + o(∥(h, k)∥)

First-order KKT conditions (equality constraint)

Let (p, u) verify E(p, u) = 0 and ∂uE(p, u) linear continuous with bounded inverse. Assume Ĵ has
a local extremum at p. Then, there exists λ = λ(p, u) such that

∂λL(p, u, λ) = 0, ∂uL(p, u, λ) = 0, ∂pL(p, u, λ) = 0,

where L(p, u, λ) := J(p, u) +
〈
E(p, u), λ

〉
is the Lagrangian associated with the constrained

optimization problem.
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Time-independent case

Reduced objective derivative using state sensitivities

min
p∈P,u∈U

J(p, u) subject to E(p, u) = 0

• Let p, u verify E(p, u) = 0 (i.e. u = u(p)). Assume ∂uE(p, u(p)) ∈ L(U ,U ′) invertible with
bounded inverse. By implicit function thm., u(·) differentiable at p and

∂uE(p, u) u′(p) + ∂pE(p, u) = 0

To compute u′(p)q for given q ∈P: solve ∂uE(p, u)[u′(p)q] = −∂pE(p, u)q .

• Then, differentiation of reduced objective Ĵ = J(u(·), ·) at p yields

Ĵ′(p)q = ∂uJ(p, u) u
′(p)q + ∂pJ(p, u)q

• For P-dim. parameter approximation p ∈ span(π1, . . . , πP):

∇Ĵ(p) =
(
Ĵ′(p)π1, . . . , Ĵ

′(p)πP

)T
A priori entails solving P sensitivity problems:

Ĵ′(p)πk = ∂uJ(p, u) u
′(p)πk + ∂pJ(p, u)πk ,

with ∂uE(p, u)u′(p)πk = −∂pE(p, u)πk (1≤ k ≤P)

• Descent directions require the full gradient, e.g. d = −H·∇Ĵ(p) using quasi-Newton

• Adjoint solution method: provides ∇Ĵ(p) without actually solving sensitivity problems
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Time-independent case

Adjoint solution method: basic mechanism

Adjoint solution method: provides ∇Ĵ(p) without actually solving sensitivity problems

Ĵ′(p)πk = ∂uJ(p, u) u
′(p)πk + ∂pJ(p, u)πk ,

with ∂uE(p, u)u′(p)πk = −∂pE(p, u)πk (1≤ k ≤P)

i.e. Ĵ′(p)πk = g vk + ∂pJ(p, u)πk , with Avk = fk (1≤ k ≤P)

• Basic task: to evaluate one linear functional
〈
g , vk

〉
on (possibly infinitely) many vk solving

Avk = fk .

• Associate adjoint solution λ to g by A⋆λ = g , use transposition (
〈
x ,Ay

〉
=

〈
A⋆x , y

〉
):〈

g , vk
〉
=

〈
A⋆λ, vk

〉
=

〈
λ,Avk

〉
=

〈
λ, fk

〉 〈
g , vk

〉
=

〈
λ, fk

〉
for all k
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Time-independent case

Reduced objective derivative using adjoint solution

• In present context (with q = π1, . . . , πP for the discrete gradient):
g = −∂uJ(p, u), vk = u′(p)q, fk = −∂pE(p, u)q, q ∈P arbitrary.

• Revisit reduced objective derivative evaluation using adjoint solution:

Ĵ′(p)q = −
〈
∂uJ(p, u) ,

[
∂uE(p, u)

]−1
∂pE(p, u)q

〉
U′,U + ∂pJ(p, u)q

=
〈
−
[
∂uE(p, u)

]−⋆
∂uJ(p, u)︸ ︷︷ ︸

λ

, ∂pE(p, u)q
〉
U′,U + ∂pJ(p, u)q

The adjoint solution λ ∈ U solves
[
∂uE(p, u)

]⋆
λ = −∂uJ(p, u) . Then, for any q ∈ P:

Ĵ′(p)q =
〈
λ, ∂pE(p, u)q

〉
U′,U + ∂pJ(p, u)q i.e.

• Same result on Ĵ′(p) found using Lagrangian L(p, u, λ) := J(p, u) +
〈
E(p, u), λ

〉
:

Ĵ′(p)q = ∂pL(p, u(p), λ(p))q

with forward and adjoint problems coinciding with first two KKT conditions

∂λL(p, u, λ) = 0, ∂uL(p, u, λ) = 0.

• Third(remaining) KKT condition in the form ∂pL(p, u(p), λ(p)) = 0: 1st order stationarity

condition for unconstrained minimization of Ĵ(p).
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Time-independent case

Example: inverse conductivity (EIT) problem

• Forward problem: find electrostatic potential u in Ω given source f and conductivity σ

−div (σ∇u) = f in Ω, ∂nu = 0 on ∂Ω
(
E(σ, u) = 0

)

Ω(σ)

Γ

Ω(σ)

u = um

Γ

Variational formulation, U =
{
w ∈ H1(Ω), ⟨w⟩Ω = 0

}
:

Find u ∈U , A(σ, u,w)− F (w) = 0 for all w ∈ U

i.e. E(σ, u) = 0, E : P×U → U ′


A(σ, u,w) :=

∫
Ω
σ∇u ·∇w dV

F (w) :=

∫
Ω
f w , dS

• Inverse problem: estimate σ from measurements um of u on Γ.

Optimization approach: regularized output least-squares with PDE constraint linking u to σ

min
σ,u

J(σ, u) subject to E(σ, u) = 0 e.g. J(σ, u) =
1

2

∫
Γ
|u − um|2 dS + αR(σ)

Often additional inequality constraints (mostly left out in this talk), e.g. σ ≥ σ0, σ ∈ K . . .
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Time-independent case

Linear PDE constraint in weak form

min
p∈P,u∈U

J(p, u) subject to A(p, u,w)− F (w) = 0 for all w ∈U

where A(p, • , • ) bilinear, continuous form, and thus ∂uA(p, u,w)z = A(p, z,w).
• Variational formulations for state sensitivity and adjoint problems:

A(p, u′(p)q,w) = −∂pA(p, u,w)q ∀w ∈U (sensitivity)

A(p,w , λ) = −∂uJ(p, u)w ∀w ∈U (adjoint)
• Combine with w = −λ and w = u′(p)q:

−A(p, u′(p)q, λ) = ∂pA(p, u, λ)q

A(p, u′(p)q, λ) = −∂uJ(p, u)u
′(p)q

}
=⇒ ∂uJ(p, u)u

′(p)q = ∂pA(p, u, λ)q

The adjoint solution λ ∈ U solves A(p,w , λ) = −∂uJ(p, u)w ∀w ∈U . Then, for any q ∈ P:

Ĵ′(p)q = ∂pA(p, u, λ)q + ∂pJ(p, u)q i.e. Ĵ′(p) = ∂pA(p, u, λ) + ∂pJ(p, u)

Inverse conductivity pb.: p = σ, A(σ, u,w) trilinear and J′(u)w =
∫
ΓN

(u−um)w dS , hence

A(σ, u′(σ)s,w) = −A(s, u,w) ∀w ∈U (sensitivity)

A(σ,w , λ) = −
(
(u−um),w

)
ΓN

∀w ∈U (adjoint)

Ĵ′(σ)s =

∫
Ω
s∇u(σ)·∇λ(σ) dV + αR′(σ)s
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Linear time-dependent case

Example: diffusivity identification for the heat equation

• Forward problem: find temperature u in Ω given source f and diffusivity σ

∂tu − div (σ∇u) = f in Ω, ∂nu = 0 on ∂Ω, u( • , 0) = 0 in Ω
(
E(σ, u) = 0

)

Ω(σ)

Γ

Ω(σ)

u = um

Γ

Variational formulation, U = H1([0,T ]×Ω)
}
:

Find u ∈U ,

{
(∂tu,w)Ω + A(σ, u,w)− F (w) = 0 t ∈ [0,T ] for all w ∈ H1(Ω)

u( • , 0) = 0 in Ω

• Inverse problem: estimate σ from measurements um of u on Γ× [0,T ].

min
σ,u

J(σ, u) s.t. E(σ, u) = 0 e.g. J(σ, u) =
1

2

∫ T

0

∫
Γ
|u − um|2 dS dt + αR(σ).

Same general approach for full-waveform inversion (FWI, geophysics) and many other cases.
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Linear time-dependent case

Adjoint solution, heat equation example

• Variational formulations for the (forward) sensitivity and (backward) adjoint problems:

Find u′ = u′(σ)s ∈U ,

{(
∂tu

′,w
)
Ω
+ A(σ, u′,w) = −A(s, u,w) t ∈ [0,T ] ∀w ∈H1(Ω)

u′(·, 0) = 0 in Ω

Find λ∈U ,

{
−
(
w , ∂tλ

)
Ω
+ A(σ,w , λ) = −

(
u−um,w

)
Γ

t ∈ [0,T ] ∀w ∈H1(Ω)

λ(·,T ) = 0 in Ω

• Set w = λ, w = −u′, integrate over [0,T ], combine, use initial/final conditions:(
∂tu

′, λ
)
Ω
+ A(σ, u′, λ) = −A(s, u, λ)(

u′, ∂tλ
)
Ω
− A(σ, u′, λ) =

(
u−um, u′

)
Γ

}

=⇒
∫ T

0

(
u−um, u′

)
Γ
dt −

∫ T

0
A(s, u, λ) dt =

∫ T

0
∂t
(
u′, λ

)
Ω
dt = 0

i.e. ∂uJ(σ, u)u
′ =

∫ T

0
A(s, u, λ) dt

Ĵ′(σ)s = ∂uJ(σ, u)u
′(σ)s + ∂σJ(σ, u) =

∫ T

0
A(s, u, λ) dt + αR′(σ)s
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Linear time-dependent case

Additional considerations

Find λ∈U ,

{
−
(
w , ∂tλ

)
Ω
+ A(σ,w , λ) = −

(
u−um,w

)
Γ

t ∈ [0,T ] ∀w ∈H1(Ω)

λ(·,T ) = 0 in Ω

• Time-backward adjoint solution with final condition.

Solving adjoint problem requires forward solution over whole duration [0,T ] (here),
at final time (occasionally).

• In general, gradient evaluation needs forward and adjoint solutions over whole duration [0,T ].

• Can cause significant memory problems in large-scale applications. Mitigation includes

▷ treating [0,T ] piecewise and recomputing parts of forward history.
▷ “parareal” method [P.L. Lions, Y. Maday, G. Turini 01]

• Same result on Ĵ′(y) by 1st order stationarity conditions ∂λL = 0, ∂uL = 0 of Lagrangian

L(σ, u, λ) := J(σ, u) +

∫ T

0

{(
∂tu, λ

)
Ω
+ A(σ, u, λ)− F (λ)

}
dt

• Time reversal t = T −τ yields adjoint problem as IVP for the heat eq.

Find λ∈U ,

{(
w , ∂tλ

)
Ω
+ A(σ,w , λ) = −

(
(u−um)(T − • ),w

)
Γ

τ ∈ [0,T ] ∀w ∈H1(Ω)

λ(·, 0) = 0 in Ω

and time convolution form of the objective function derivatives
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Linear time-dependent case

Adjoint-then-discretize, or vice versa

Discretized setting of constrained optimization problem, time-dependent example:
• Objective function:

Ĵ(σ) = J(σ, u1, . . . , uN)

Ĵ′(σ)s = ∂σJ(σ, u1, . . . , uN)s +
N∑

n=1

∂unJ(σ, u1, . . . , uN)u
′
n(σ)s

• Forward problem with backward Euler (implicit) time stepping, h := ∆t:
Mu0 = 0,

(
M+hK(σ)

)
un+1 = Mun + Fn+1 n = 0, 1, . . . ,N−1

• Forward sensitivity problem:

Mu′0 = 0,
(
M+hK(σ)

)
u′n+1 = Mu′n − hK(s)un+1 n = 0, 1, . . . ,N−1 (Sn)

• Adjoint problem (can be found from relevant Lagrangian):

MλN = 0,
(
M+hK(σ)

)
λn = Mλn+1 − ∂un+1J(σ, . . .)s n = N−1, . . . , 0 (An)

• Combine, use initial and final conditions:
N−1∑
n=0

{
λT
n(Sn)− u′n+1

T (An)
}

=
N∑

n=1

{
∂unJ(σ, u1, . . . , uN)u

′
n(σ)s − hλT

n−1K(s)un
}

Objective function derivatives using discrete adjoint method:

Ĵ′(σ)s = ∂σJ(σ, u1, . . . , uN)s + h
N∑

n=1

λT
n−1K(s)un

M. Bonnet (POems, ENSTA) Adjoint solution method for inverse and optimization problems 15 / 31



Second-order derivatives

1. Introduction

2. Time-independent case

3. Linear time-dependent case

4. Second-order derivatives

5. Topological derivatives for qualitative inverse scattering

6. Closing remarks

M. Bonnet (POems, ENSTA) Adjoint solution method for inverse and optimization problems 15 / 31



Second-order derivatives

Second-order derivatives

Minimization under linear PDE constraint:

min
p,u

J(p, u) s.t. A(p, u,w)− F (w) = 0 for all w ∈U

• Second-order derivative Ĵ′′(p)(q, r) of Ĵ(p) := J(u(p))? Useful e.g. to

▷ Find q solving Ĵ′′(p)(q, r) + Ĵ′(p)r = 0 for all r

(Newton step / descent dir. based on ∂p Ĵ(p) = 0, minimize quadratic approx. of Ĵ...)
▷ Evaluate / check second-order optimality conditions

• Main idea: differentiate first-order derivative. Adjoint-solution approach (for J = J(u)) gives

Ĵ′(p)r = −∂pA
(
p, u(p), λ(p)

)
r

Then

Ĵ′′(p)(q, r) = −∂pA
(
p, u′(p)q, λ(p)

)
r − ∂pA

(
p, u(p), λ′(p)q

)
r − ∂ppA

(
p, u(p), λ(p)

)
(q, r)

with the forward and adjoint solution derivatives u′ and λ′ satisfying

A
(
u′(p)q,w , p

)
= −∂pA

(
u(p),w , p

)
q for all w ∈U

A
(
w , λ′(p)q, p

)
= −∂pA

(
u(p),w , p

)
q for all w ∈U

For P-dim. parameter approximation setting:

▷ Evaluation of Ĵ′′(p)(q, ·): needs u(p), λ(p), u′(p)q, λ′(p)q (4 solutions)

▷ Evaluation of Ĵ′′(p): needs u(p), λ(p), and u′(p)r , λ′(p)r for all r (2 + 2P solutions)

Method used e.g. in full-waveform inversion [Metivier et al. 2012].
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Topological derivatives for qualitative inverse scattering

Wave-based identification

z

M

s

• Standard approach: PDE-constrained minimization of (e.g. output least-squares) cost
functional:

min
B

J (B), e.g. J (B) := J(uB) =
1

2

∫
M

∣∣uB − uobs
∣∣2 dM

Entails repeated evaluations of forward (and adjoint if gradient-based) solutions uB

• Impetus for development of non-iterative, qualitative, sampling-based identification.
General idea: focus on finding the support of B, define a function ϕ to determine whether
z ̸∈ B or z ∈ B based on value ϕ(z) at sampling points z .

• Linear sampling method (Colton, Kirsch ’96), factorization method (Kirsch’98)
Mathematically well-justified; require abundant data

• Topological derivative (this talk):
Conditional partial mathematical justification so far; any overdetermined data

A Qualitative Approach to Inverse Scattering Theory (F. Cakoni, D. Colton, 2014)
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Topological derivatives for qualitative inverse scattering

Topological derivative concept (topology optimization)

TD: sensitivity analysis tool [Eschenauer et al 94; Sokolowski, Zochowski 99; Garreau et al 01. . . ]
• Initially introduced and applied for topology optimization

0 20 40 60 80 100
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• Later proved useful also for qualitative flaw identification
PhD G. Delgado (2014), adv. G. Allaire — Topology optimization combining topological and shape derivatives
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Topological derivatives for qualitative inverse scattering

Topological derivative concept (conducting inclusion identification)

• Objective functional (as example): Ĵ(D) = J(uD) =
1

2

∫
∂Ω

|uD − um|2 dS

2ε

z

z

Ω(σ)

Dε(σ +∆σ)

• Consider small trial penetrable inclusion Dε = z + εD ⋐ Ω (D,∆σ prescribed)

u: background, uD : (true or trial) object D, uε : small trial object Dε

• J has expansion J(uε ) = J(u) + εdT (z) + o(εd ).

• T (z) = T (z ;D, σ,∆σ): topological derivative (TD) of J at z ∈Ω.

Heuristic idea for flaw imaging: find D by seeking regions in Ω where
T (z ;D) is most negative.

• Proposed defect indicator function: z 7→ T (z ;D)

• Qualitative estimation (location, size, number) of buried objects.

• Heuristic involves both magnitude and sign of T (z ;D)
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Topological derivatives for qualitative inverse scattering

TD as imaging functional for qualitative flaw identification

• Connects qualitative inverse scattering to PDE-constrained approaches
▷ Framework allowing to use any available data
▷ Most developments to date in connection with (acoustic, elastodynamic,

electromagnetic) linear wave models
▷ Bounded or unbounded propagation domains

• Many empirical validations of this heuristic even for macroscopic defects
▷ using synthetic data (many references)
▷ using experimental data [Tokmashev, Tixier, Guzina 2013].
▷ simplified variants, experimental data [Dominguez et al. 2005, Rodriguez et al. 2014].

• Heuristic proved in some cases:
▷ far-field data, medium perturbation in zeroth-order PDE term, “moderate” scatterers

[Bellis, B, Cakoni 2013],
▷ near-field data, medium perturbation in leading-order PDE term, “moderate” scatterers

[B, Cakoni 2019; B. 2022],
▷ small obstacles [Ammari et al. 2012, Wahab 15],

• High-frequency behavior [Guzina, Pourahmadian 2015] (TD emphasizes boundaries).

• Usually want to compute the field z 7→ T (z) =⇒ Purely numerical evaluation impractical

• Analytical TD formulas rely on asymptotic approximation of uε . Several approaches, e.g.:

▷ Isolate finite region C ⊂Ω around Dε (z), asymptotic form of DtN on ∂C
▷ Find asymptotic form of shape derivative (homothetic dilatation of Dε ) as ε → 0;
▷ Find asymptotic form of (volume or boundary) integral equation (this lecture)
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Topological derivatives for qualitative inverse scattering

Topological derivative: evaluation using adjoint solution

Focus here on medium perturbations in leading-order PDO term

• T (z) found as leading-order contribution in J′(u)(uε −u) as ε → 0

• Variational formulations for background, perturbed and adjoint solutions:

A(u,w) = F (w) ∀w ∈U (background)(
∆σ∇uε ,∇w

)
Dε,z

+ A(uε ,w) = F (w) ∀w ∈U (perturbed)

A(w , λ) = J′(u)w ∀w ∈U (adjoint)
• Combine with w = λ, −λ, uε −u:

A(u, λ) = F (λ)

−
(
∆σ∇uε ,∇λ

)
Dε,z

− A(uε , λ) = −F (λ)

A(uε −u, λ) = J′(u)(uε −u)

 ∂uJ(u)(uε −u) = −
(
∆σ∇uε ,∇λ

)
Dε,z

• Use ∇λ = ∇λ(z) + o(1) and (known) asymptotic approximation in Dε,z of the form{
uε (x) = u(z) + εU(x/ε)·∇u(z) + o(ε)

∇uε (x) = ∇U(x/ε)·∇u(z) + o(1)
in Dε,z

(
U = U( • ;D, σ,∆σ)

)
• Topological derivative:

J(uε ) = J(u) + εdT (z) + o(εd ) with T (z) = −∇u(z)·A·∇λ(z)

A = A(D, σ,∆σ) =

∫
D
∆σ∇U dV : polarization tensor (known analytically for simple D)
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Topological derivatives for qualitative inverse scattering

Topological derivative: evaluation using adjoint solution

J(uε ) = J(u) + εdT (z) + o(εd ) with T (z) = −∇u(z)·A·∇λ(z)

• In practice: (i) compute background and adjoint solutions, (ii) evaluate z 7→ T (z)
• Similar TD formulas in other cases (Maxwell, elasticity, time-harmonic or transient waves...)

• Computation of the TD field:
• Background and adjoint solutions u, û defined on same (reference) configuration

=⇒ Evaluation of ˆ̂u and T at moderate extra cost
• Computation of T (z) straightforward with standard methods (FEM, BEM...)
• Experimental information exploited via the adjoint solution û

• Corresponding results available in many other cases, e.g.
• Potential problems, elasticity: B, Delgado (2014); Delgado, B (2015); Garreau,

Guillaume, Masmoudi (2001); Novotny et al. (2003); Sokolowski, Zochowski (2001);
Vogelius, Volkov (2000); Schneider, Andrä (2013);

• Acoustics: Feijoo (2004); Guzina, B (2006); Nemitz, MB (2008)
• Electromagnetism: Masmoudi, Pommier, Samet (2005);
• Elastodynamics: Guzina, B (2004); Guzina, Chikichev (2007); Bellis, Impériale (2013)
• Time domain: Dominguez, Gibiat, Esquerré (2005); B (2006); Amstutz, Takahashi,

Wexler (2008); Tokmashev, Tixier, Guzina (2013)
• Cracks: Amstutz, Horchani, Masmoudi (2005); Bellis, B (2012); B (2011)
• Image processing: Auroux, Jaafar Belaid, Rjaibi (2010); Larnier, Masmoudi (2013)
• Related imaging functionals: Rodriguez, Sahuguet, Gibiat, Jacob (2012)
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Topological derivatives for qualitative inverse scattering

Example: FEM-based computation of T (2D time-domain wave eqn.)

Identification of impenetrable scatterer(s) in 2-D acoustic medium.

1

1

0

x2

x1

B

Ω

S1

S3

S4 S2

• Normalized scalar wave equation

∆u
(k)
B − ∂ttu

(k)
B = 0

∂nu
(k)
B =

{
1 (on Sk )

0 (on Sj , j ̸= k)
∂nu

(k)
B = 0 (on ∂B)

• Matlab (very simple) implementation, T3 elements.

• Newmark time-marching (β= 1
4
, γ = 1

2
, inconditionally stable)

• M = S1∪S2∪S3∪S4 (simulated measurements for 0≤ t ≤T )

J (k)(B) =
1

2

∫ T

0

∫
S1+S2+S3+S4

|u(k)B − u
(k)
obs|

2 ds dt

Computation of synthetic data u
(k)
obs Computation of u(k) and û(k)

Bellis, B, Int. J. Solids Struct. (2010)
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Topological derivatives for qualitative inverse scattering

FEM-based computation of T : identification of a single scatterer

Thresholded TS field:

T̂3 = T3 (T3 ≤αT Min
3 )

= 0 (T3 >αT Min
3 )

k = 1, T = 2

α = .75

T (z) =
(
2π∇u(k) ⋆∇û(k) +

4π

3

1

c2
u(k) ⋆ û(k)

)
(z ,T )

Bellis, B, Int. J. Solids Struct. (2010)
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Topological derivatives for qualitative inverse scattering

FEM-based computation of T : identification of a single scatterer

k =1 T =1

k =1 T =2

k =4 T =1

k =1, 2, 3, 4 T =1

Bellis, B, Int. J. Solids Struct. (2010)
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Topological derivatives for qualitative inverse scattering

FEM-based computation of T : identification of a single scatterer

(a) α = 0.1 (b) α = 0.2 (c) α = 0.3

(d) α = 0.4 (e) α = 0.5 (f) α = 0.6

(g) α = 0.7 (h) α = 0.8 (i) α = 0.9

Influence of cut-off parameter α.
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Topological derivatives for qualitative inverse scattering

FEM-based computation of T : simultaneous identification of a multiple scatterer

k = 1, 2, 3, 4, T = 2, α = 0.5

Computation of synthetic data u(k)

Bellis, B, Int. J. Solids Struct. (2010)
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Topological derivatives for qualitative inverse scattering

Example: Imaging of interface cracks (3-D transient elasticity, FEM)

• FEM-based time domain 3D simulations in stiff/soft bi-material domain
• Gaussian time distribution of compressional loading on top face
• Adimensionalization w.r.t. longitudinal wave velocity, T = 1
• Observation on top face

• Topological derivative T(·,T ) 6 0 at interface

• Extension to multilayered domains
• Study of other type of interface, e.g. fiber reinforced composites

Bellis (2011)
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Topological derivatives for qualitative inverse scattering

Experimental study (Tokmashev, Tixier, Guzina 2013)

Figure 2. Three-dimensional motion sensing via laser Doppler vibrometer (LDV) system.

(a)
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3
Spiezo

2

Spiezo

1

1
4

13

14

63
66

(b)

Sobs

5

Sobs⊂SN

Figure 4. Testing configuration: (a) photograph of the damaged plate, and (b) boundary

conditions and spatial arrangement of the LDV scan points for five individual source locations

(S
piezo

k
, k = 1, 5).

Topological derivative z 7→ T (z) for

J(uD) =
1

2

∫ T

0

∫
S
|uD − um|2 dS dt
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Closing remarks

Closing remark: different derivatives but same adjoint solution

• Assume fixed basic setting (physical configuration, objective function).

e.g. conductivity problem with objective function J(u) =
1

2

∫
∂Ω

|u−um|2 dS

Adjoint solution λ only depends on (choice of) J. Here:

▷ Material parameter perturbation (σ → σ+ s):

Ĵ(σ+ s)− Ĵ(σ) =

∫
Ω
s∇u ·∇λ dV + o(∥s∥)

▷ Inclusion shape perturbation (D → D+θ(D)):

Ĵ(D+θ(D))− Ĵ(D) =

∫
∂D

∆σ(∇Su ·∇Sλ)θ ·n dV + o(∥θ∥)

▷ Topology change via small-inclusion nucleation (∅ → Dε,z (∆σ)):

Ĵ(Dε,z )− Ĵ(∅) = εd ∇u(z)·A(D, σ,∆σ⋆)·∇λ(z) + o(∥εd∥)
• Formulas are bilinear in same (forward and adjoint) solutions, differ in details.

• One adjoint solution per objective function, applies (even simultaneously) to all types of
sensitivity

See e.g. Céa, Garreau, Guillaume, Masmoudi 2000
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Closing remarks

Thank you for listening!

Any questions?
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