Adjoint solution method for inverse and optimization problems.

Marc Bonnet

Propagation des Ondes: Etudes Mathématiques et Simulation (POEMS) UMR 7231 CNRS-INRIA-ENSTA Unité de Mathématiques Appliquées ENSTA Paris

mbonnet@ensta.fr

M. Bonnet (POems, ENSTA) [Adjoint solution method for inverse and optimization problems](#page-36-0) 1/31

Contents

1. [Introduction](#page-2-0)

- 2. [Time-independent case](#page-7-0)
- 3. [Linear time-dependent case](#page-13-0)
- 4. [Second-order derivatives](#page-18-0)
- 5. [Topological derivatives for qualitative inverse scattering](#page-20-0)
- 6. [Closing remarks](#page-34-0)

1. [Introduction](#page-2-0)

- 2. [Time-independent case](#page-7-0)
- 3. [Linear time-dependent case](#page-13-0)
- 4. [Second-order derivatives](#page-18-0)
- 5. [Topological derivatives for qualitative inverse scattering](#page-20-0)
- 6. [Closing remarks](#page-34-0)

[Introduction](#page-2-0)

Optimization and inversion based on physical ODE/PDE models

- Optimization (inverse, optimal control. . .) problems based on PDE/ODE models arise in many areas of science and engineering
- Often, find some parameter, control variable. . . given data or target on state variable(s)
- Widespread use of PDE-constrained optimization. Possibly most well-known use: full-waveform inversion (FWI) in geophysics
- Includes optimization problem yielding MAP (Bayesian) estimates
- Includes treatment of constitutive identification using error in constitutive relation (my last two talks)

S. Kurtz, PhD 2023

[Introduction](#page-2-0)

Bayesian solution approach (Angèle's talks), short reminder

Definition of a conditional probability $P(A|B)$:

 $P(A|B) = \frac{P(A \cap B)}{P(B)}$

 $P(A \cap B) = P(B \cap A)$ (symmetry) yields Bayes' formula:

 $P(A|B)P(B) = P(B|A)P(A)$

• Idea: use Bayes to "invert" the parameter-data relationship between \boldsymbol{p} and \boldsymbol{d} :

 $f_{\mathcal{P}|\mathcal{D}}(\boldsymbol{p}|\boldsymbol{d}_{\text{obs}}) \propto f_{\mathcal{D}|\mathcal{P}}(\boldsymbol{d}_{\text{obs}}|\boldsymbol{p})f_{\mathcal{P}}(\boldsymbol{p})$

 $f_{\mathcal{P}}(\boldsymbol{p})$: probability density describing prior information on \boldsymbol{p} $f_{\mathcal{D}|\mathcal{P}}(\boldsymbol{d}|\boldsymbol{p})$: probability density describing the effect of the forward problem (probability density describing modeling and measurement uncertainties)

 $f_{\mathcal{P}|\mathcal{D}}(\boldsymbol{p}|\boldsymbol{d}_{\rm obs})$: probability density on \boldsymbol{p} given \boldsymbol{d} (defines a solution of the inverse problem)

Estimators on **p** extracted by post-processing $f_{\mathcal{P}|\mathcal{D}}(\boldsymbol{p}|\boldsymbol{d}_{\text{obs}})$. In particular:

 $\bm{p}_{\sf MAP} = \arg\max_p f_{\mathcal{P}|\mathcal{D}}(\bm{p}|\bm{d}_{\sf obs}) \qquad \textit{Maximum a posteriori estimate}$

Main focus of e.g. Tarantola's first book on inverse problems (1987)

[Introduction](#page-2-0)

PDE-constrained optimization, general considerations

• Forward solution u and parameter p linked by ODE/PDE model $E(p, u) = 0$:

seek p solving $\min_{p,\mu} J(p,u)$ s.t. $E(p,u) = 0$ (and possibly $u \in \mathcal{U}_{\text{adm}}$, $p \in \mathcal{P}_{\text{adm}} \dots$)

• Assume (usually) $E(p, u) = 0$ solvable for u given p (can be subject to admissibility constraints on p): u implicit function of p through $E(p, u) = 0$: (often-nonlinear) solution mapping $p \mapsto u(p)$

Reduced objective and minimization:

$$
\min_{p \in \mathcal{P}_{\text{adm}}} \widehat{J}(p) := J(p, u(p))
$$

- Iterative optimization algorithms, compute minimizing sequence $p_n \to p$ Need (at least) evaluation of each $\widehat{J}(p_n)$; requires $u_n = u(p_n)$ via PDE solve.
- Optimization algorithms using evaluations of $\nabla \widehat{J}$ (sometimes $\nabla \nabla \widehat{J}$) avoid excessive number of (costly) PDE solves. Descent directions usually defined using full gradient $\nabla \widehat{J}$.
- (KKT) optimality conditions (basis of some algorithms) expressed with derivatives of J, E .
- Numerical derivatives of \widehat{J} for P-dim. parameter approximation $p \in span(\pi_1, \ldots, \pi_P)$, e.g.:

$$
\nabla \widehat{J}(p) \approx \Big(\frac{\widehat{J}(p + h\pi_1) - \widehat{J}(p)}{h}, \ldots, \frac{\widehat{J}(p + h\pi_P) - \widehat{J}(p)}{h}\Big) \qquad h: \text{ small step}
$$

Total evaluation cost for $\widehat{J}(p), \nabla \widehat{J}(p)$: P + 1 PDE solves (at least once per optim. iteration).

• Can be greatly improved: analytical sensitivity or (better still) adjoint solution methods

A few words about derivatives

Derivative

Let $f:\mathcal{X}\to\mathcal{Y}$ $(\mathcal{X},\mathcal{Y}% _{T}^{(n)})$ normed vector spaces). If $\Big|f(a+h)=f(a)+f^{\prime}(a)h+o(\|h\|_{\mathcal{X}})\Big|$ with linear continuous operator $f'(a) \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, we say that $f'(a)$ is the (Fréchet) derivative of f at a.

- Finite-dim. case: $f'(a)$ Jacobian matrix of f at a;
- $\bullet\;\;\mathcal{Y}=\mathbb{R}\colon\thinspace f'(a)$ is a continuous linear functional, $f'(a)h=\left\langle\thinspace f'(a),h\right\rangle$ $(\left\langle\thinspace\cdot,\star\right\rangle$ duality bracket);
- $\mathcal{Y} = \mathbb{R}$ and \mathcal{X} Hilbert: there is $g(a) \in \mathcal{X}$ (gradient of f at a) such that $f'(a)h = (g(a), h)_{\mathcal{X}}$

• If f multivariate, e.g. $(x, y) \mapsto f(x, y)$, we write $f(a+h, b+k) = f(a, b) + \partial_x f(a)h + \partial_y f(b)k + o(||(h, k)||)$

First-order KKT conditions (equality constraint)

Let (p, u) verify $E(p, u) = 0$ and $\partial_u E(p, u)$ linear continuous with bounded inverse. Assume \hat{J} has a local extremum at p. Then, there exists $\lambda = \lambda(p, u)$ such that

 $\partial_{\lambda}\mathcal{L}(p, u, \lambda) = 0$, $\partial_{u}\mathcal{L}(p, u, \lambda) = 0$, $\partial_{p}\mathcal{L}(p, u, \lambda) = 0$,

where $\mathcal{L}(p,u,\lambda):=J(p,u)+\langle\, E(p,u),\lambda\,\rangle$ is the Lagrangian associated with the constrained optimization problem.

1. [Introduction](#page-2-0)

2. [Time-independent case](#page-7-0)

- 3. [Linear time-dependent case](#page-13-0)
- 4. [Second-order derivatives](#page-18-0)
- 5. [Topological derivatives for qualitative inverse scattering](#page-20-0)
- 6. [Closing remarks](#page-34-0)

Reduced objective derivative using state sensitivities

min $J(p, u)$ subject to $E(p, u) = 0$

• Let p, u verify $E(p, u) = 0$ (i.e. $u = u(p)$). Assume $\partial_u E(p, u(p)) \in \mathcal{L}(\mathcal{U}, \mathcal{U}')$ invertible with bounded inverse. By implicit function thm., $u(\cdot)$ differentiable at p and

 $\partial_u \overline{E}(p, u) u'(p) + \partial_p \overline{E}(p, u) = 0$

To compute $u'(p)q$ for given $q \in \mathcal{P}$: solve $\partial_u E(p, u)[u'(p)q] = -\partial_p E(p, u)q$.

- Then, differentiation of reduced objective $\widehat{J} = J(u(\cdot), \cdot)$ at p yields $\widehat{J}'(p)q = \partial_u J(p, u) u'(p)q + \partial_p J(p, u)q$
- For P-dim. parameter approximation $p \in span(\pi_1, \ldots, \pi_P)$:

 $\nabla \widehat{J}(p) = (\widehat{J}(p)\pi_1, \ldots, \widehat{J}(p)\pi_P)^{\mathsf{T}}$

A priori entails solving P sensitivity problems:

 $\widehat{J}'(p)\pi_k = \partial_u J(p,u) u'(p)\pi_k + \partial_p J(p,u)\pi_k,$

with $\partial_u E(p, u) u'(p) \pi_k = -\partial_p E(p, u) \pi_k \quad (1 \leq k \leq P)$

- Descent directions require the full gradient, e.g. $d = -H \cdot \nabla \widehat{J}(\rho)$ using quasi-Newton
- **Adjoint solution method:** provides $\nabla \hat{J}(p)$ without actually solving sensitivity problems

Adjoint solution method: basic mechanism

Adjoint solution method: provides $\nabla \widehat{J}(p)$ without actually solving sensitivity problems

$$
\widehat{J}'(p)\pi_k=\partial_u J(p,u) u'(p)\pi_k+\partial_p J(p,u)\pi_k,
$$

with $\partial_u E(p, u) u'(p) \pi_k = -\partial_p E(p, u) \pi_k \quad (1 \leq k \leq P)$

i.e. $\hat{J}(\rho)\pi_k = g v_k + \partial_\rho J(\rho, u)\pi_k$, with $Av_k = f_k$ $(1 \leq k \leq P)$

- $\bullet\,$ Basic task: to evaluate one linear functional \langle g, v_k \rangle on (possibly infinitely) many v_k solving $Av_k = f_k$
- Associate adjoint solution λ to g by $A^*\lambda = g$, use transposition $(\langle x, Ay \rangle = \langle A^*x, y \rangle)$:

 $\big\langle \, g, v_k \, \big\rangle = \big\langle \, A^\star \lambda, v_k \, \big\rangle = \big\langle \, \lambda, A v_k \, \big\rangle = \big\langle \, \lambda, f_k \, \big\rangle \qquad \Big\vert \, \big\langle \, g, v_k \, \big\rangle = \big\langle \, \lambda, f_k \, \big\rangle \quad \text{for all } k$

Reduced objective derivative using adjoint solution

- In present context (with $q = \pi_1, \ldots, \pi_p$ for the discrete gradient): $g = -\partial_u J(p, u)$, $v_k = u'(p)q$, $f_k = -\partial_p E(p, u)q$, $q \in \mathcal{P}$ arbitrary.
- Revisit reduced objective derivative evaluation using adjoint solution:

$$
\begin{aligned} \widehat{J}(p)q &= -\langle \partial_u J(p,u) \,, \, \left[\partial_u \mathcal{E}(p,u) \right]^{-1} \partial_p \mathcal{E}(p,u) q \rangle_{\mathcal{U}',\mathcal{U}} + \partial_p J(p,u) q \\ &= \langle \underbrace{-\left[\partial_u \mathcal{E}(p,u) \right]^{-\star} \partial_u J(p,u)}_{\lambda}, \, \partial_p \mathcal{E}(p,u) q \rangle_{\mathcal{U}',\mathcal{U}} + \partial_p J(p,u) q \rangle_{\mathcal{U}'} \end{aligned}
$$

The adjoint solution $\lambda \in \mathcal{U}$ solves $\left[\partial_u E(p,u)\right]^* \lambda = -\partial_u J(p,u)$. Then, for any $q \in \mathcal{P}$: $\widehat{J}(\rho)q = \big\langle \lambda, \, \partial_{\rho}E(\rho, u)q \big\rangle_{\mathcal{U}^{\prime}, \mathcal{U}} + \partial_{\rho}J(\rho, u)q \quad \text{i.e.}$

• Same result on $\widehat{J}'(p)$ found using Lagrangian $\mathcal{L}(p,u,\lambda) := J(p,u) + \langle E(p,u),\lambda \rangle$: $\widehat{J}'(p)q = \partial_p \mathcal{L}(p, u(p), \lambda(p))q$

with forward and adjoint problems coinciding with first two KKT conditions

 $\partial_{\lambda} \mathcal{L}(p, u, \lambda) = 0$, $\partial_{u} \mathcal{L}(p, u, \lambda) = 0$.

• Third(remaining) KKT condition in the form $\partial_p \mathcal{L}(p, u(p), \lambda(p)) = 0$: 1st order stationarity condition for unconstrained minimization of $\widehat{J}(p)$.

Example: inverse conductivity (EIT) problem

• Forward problem: find electrostatic potential u in Ω given source f and conductivity σ

• Inverse problem: estimate σ from measurements u^m of u on Γ . Optimization approach: regularized output least-squares with PDE constraint linking u to σ

min $J(\sigma, u)$ subject to $E(\sigma, u) = 0$ e.g. $J(\sigma, u) = \frac{1}{2}$

Z $\int_{\Gamma} |u - u^{\mathfrak{m}}|^2 \, \mathsf{d} S + \alpha R(\sigma)$

Often additional inequality constraints (mostly left out in this talk), e.g. $\sigma \geq \sigma_0$, $\sigma \in \mathcal{K}$...

Linear PDE constraint in weak form

min p∈P,u∈U subject to $A(p, u, w) - F(w) = 0$ for all $w \in \mathcal{U}$

where $A(p, \cdot, \cdot)$ bilinear, continuous form, and thus $\partial_u A(p, u, w)z = A(p, z, w)$.

• Variational formulations for state sensitivity and adjoint problems:

$$
A(p, u'(p)q, w) = -\partial_p A(p, u, w)q \qquad \forall w \in \mathcal{U} \qquad \text{(sensitivity)}
$$

\n
$$
A(p, w, \lambda) = -\partial_u J(p, u)w \qquad \forall w \in \mathcal{U} \qquad \text{(adjoint)}
$$

\n• Combine with $w = -\lambda$ and $w = u'(p)q$:
\n
$$
-A(p, u'(p)q, \lambda) = \partial_p A(p, u, \lambda)q
$$

\n
$$
A(p, u'(p)q, \lambda) = -\partial_u J(p, u)u'(p)q \qquad \Longrightarrow \qquad \overline{\partial_u J(p, u)u'(p)q} = \partial_p A(p, u, \lambda)q
$$

The adjoint solution $\lambda\in\mathcal U$ solves $A(p,w,\lambda)=-\partial_u J(p,u)$ w $\forall w\in\mathcal U$. Then, for any $q\in\mathcal P$: $\widehat{J}(\rho)q = \partial_{\rho}A(\rho, u, \lambda)q + \partial_{\rho}J(\rho, u)q$ i.e. $\widehat{J}(\rho) = \partial_{\rho}A(\rho, u, \lambda) + \partial_{\rho}J(\rho, u)$

Inverse conductivity pb.: $p = \sigma$, $A(\sigma, u, w)$ trilinear and $J'(u)w = \int_{\Gamma_N} (u - u^m) w \, dS$, hence $A(\sigma, u'$ $\forall w \in \mathcal{U}$ (sensitivity) $A(\sigma, w, \lambda) = -((u - u^m), w)_{\Gamma_N}$ $\forall w \in \mathcal{U}$ (adjoint) $\widehat{J}'(\sigma)$ s = | $\int\limits_\Omega s\boldsymbol{\nabla} u(\sigma)\!\cdot\!\boldsymbol{\nabla}\lambda(\sigma)\ {\mathsf{d}} V+\alpha R'(\sigma) s$

1. [Introduction](#page-2-0)

- 2. [Time-independent case](#page-7-0)
- 3. [Linear time-dependent case](#page-13-0)
- 4. [Second-order derivatives](#page-18-0)
- 5. [Topological derivatives for qualitative inverse scattering](#page-20-0)
- 6. [Closing remarks](#page-34-0)

Example: diffusivity identification for the heat equation

• Forward problem: find temperature u in Ω given source f and diffusivity σ

Variational formulation, $\mathcal{U} = H^1([0, T] \times \Omega)$:

Find
$$
u \in \mathcal{U}
$$
,
$$
\begin{cases} (\partial_t u, w)_{\Omega} + A(\sigma, u, w) - F(w) = 0 & t \in [0, T] \text{ for all } w \in H^1(\Omega) \\ u(\cdot, 0) = 0 & \text{in } \Omega \end{cases}
$$

• Inverse problem: estimate σ from measurements u^m of u on $\Gamma \times [0, T]$.

$$
\boxed{\min_{\sigma, u} J(\sigma, u)} \quad \text{s.t. } E(\sigma, u) = 0 \quad \text{e.g. } J(\sigma, u) = \frac{1}{2} \int_0^T \int_{\Gamma} |u - u^m|^2 \, \mathrm{d}S \, \mathrm{d}t + \alpha R(\sigma).
$$

Same general approach for full-waveform inversion (FWI, geophysics) and many other cases.

Adjoint solution, heat equation example

• Variational formulations for the (forward) sensitivity and (backward) adjoint problems:

Find
$$
u' = u'(\sigma)s \in \mathcal{U}
$$
,
$$
\begin{cases} (\partial_t u', w)_\Omega + A(\sigma, u', w) = -A(s, u, w) & t \in [0, T] \quad \forall w \in H^1(\Omega) \\ u'(\cdot, 0) = 0 & \text{in } \Omega \end{cases}
$$

Find $\lambda \in \mathcal{U}$,
$$
\begin{cases} -(w, \partial_t \lambda)_\Omega + A(\sigma, w, \lambda) = -(u - u^m, w)_\Gamma & t \in [0, T] \quad \forall w \in H^1(\Omega) \\ \lambda(\cdot, T) = 0 & \text{in } \Omega \end{cases}
$$

• Set $w = \lambda$, $w = -u'$, integrate over [0, T], combine, use initial/final conditions:

$$
(\partial_t u', \lambda)_{\Omega} + A(\sigma, u', \lambda) = -A(s, u, \lambda)
$$

\n
$$
(u', \partial_t \lambda)_{\Omega} - A(\sigma, u', \lambda) = (u - u^m, u')_{\Gamma}
$$

\n
$$
\implies \int_0^T (u - u^m, u')_{\Gamma} dt - \int_0^T A(s, u, \lambda) dt = \int_0^T \partial_t (u', \lambda)_{\Omega} dt = 0
$$

\n
$$
\partial_{\omega} |(\sigma, u)u'| = \int_0^T A(s, u, \lambda) dt
$$

i.e.

$$
\partial_u J(\sigma, u) u' = \int_0^T A(s, u, \lambda) dt
$$

$$
\widehat{J}'(\sigma)s = \partial_u J(\sigma, u)u'(\sigma)s + \partial_\sigma J(\sigma, u) = \int_0^T A(s, u, \lambda) dt + \alpha R'(\sigma)s
$$

Additional considerations

Find
$$
\lambda \in \mathcal{U}
$$
, $\left\{ -\left(w, \partial_t \lambda \right)_{\Omega} + A(\sigma, w, \lambda) = -\left(u - u^m, w \right)_{\Gamma} \right\}$ $t \in [0, T]$ $\forall w \in H^1(\Omega)$
 $\lambda(\cdot, T) = 0$ in Ω

- Time-backward adjoint solution with final condition. Solving adjoint problem requires forward solution over whole duration $[0, T]$ (here), at final time (occasionally).
- In general, gradient evaluation needs forward and adjoint solutions over whole duration [0, T].
- Can cause significant memory problems in large-scale applications. Mitigation includes \triangleright treating $[0, T]$ piecewise and recomputing parts of forward history.
	- ▷ "parareal" method [P.L. Lions, Y. Maday, G. Turini 01]
- Same result on $\widehat{J}'(y)$ by 1st order stationarity conditions $\partial_{\lambda}\mathcal{L}=0$, $\partial_{u}\mathcal{L}=0$ of Lagrangian

$$
\mathcal{L}(\sigma, u, \lambda) := J(\sigma, u) + \int_0^T \left\{ \left(\partial_t u, \lambda \right)_{\Omega} + A(\sigma, u, \lambda) - F(\lambda) \right\} dt
$$

• Time reversal $t = T - \tau$ yields adjoint problem as IVP for the heat eq.

Find
$$
\lambda \in \mathcal{U}
$$
, $\begin{cases} (w, \partial_t \lambda)_\Omega + A(\sigma, w, \lambda) = -((u - u^m)(T - \cdot), w)_\Gamma & \tau \in [0, T] \forall w \in H^1(\Omega) \\ \lambda(\cdot, 0) = 0 & \text{in } \Omega \end{cases}$

and time convolution form of the objective function derivatives

Adjoint-then-discretize, or vice versa

Discretized setting of constrained optimization problem, time-dependent example:

• Objective function:

$$
J(\sigma) = J(\sigma, u_1, \dots, u_N)
$$

$$
\widehat{J}'(\sigma)s = \partial_{\sigma} J(\sigma, u_1, \dots, u_N)s + \sum_{n=1}^N \partial_{u_n} J(\sigma, u_1, \dots, u_N) u'_n(\sigma)s
$$

- Forward problem with backward Euler (implicit) time stepping, $h := \Delta t$: $Mu_0 = 0$, $(M + hK(\sigma))$ $n = 0, 1, \ldots, N - 1$
- Forward sensitivity problem:

$$
Mu'_0 = 0
$$
, $(M + hK(\sigma))u'_{n+1} = Mu'_n - hK(s)u_{n+1}$
 $n = 0, 1, ..., N-1$ (S_n)

Adjoint problem (can be found from relevant Lagrangian):

$$
M\lambda_N=0, \quad (M+hK(\sigma))\lambda_n=M\lambda_{n+1}-\partial_{u_{n+1}}J(\sigma,\ldots)s \qquad n=N-1,\ldots,0 \qquad (\mathcal{A}_n)
$$

• Combine, use initial and final conditions:

$$
\sum_{n=0}^{N-1}\left\{\lambda_n^{\mathsf{T}}(\mathcal{S}_n)-u_{n+1}^{\mathsf{T}}(\mathcal{A}_n)\right\}=\sum_{n=1}^{N}\left\{\partial_{u_n}J(\sigma,u_1,\ldots,u_N)u_n^{\prime}(\sigma)s-h\lambda_{n-1}^{\mathsf{T}}K(s)u_n\right\}
$$

Objective function derivatives using discrete adjoint method:

$$
\widehat{J}'(\sigma)s = \partial_{\sigma} J(\sigma, u_1, \ldots, u_N)s + h \sum_{n=1}^{N} \lambda_{n-1}^{T} K(s) u_n
$$

1. [Introduction](#page-2-0)

- 2. [Time-independent case](#page-7-0)
- 3. [Linear time-dependent case](#page-13-0)

4. [Second-order derivatives](#page-18-0)

- 5. [Topological derivatives for qualitative inverse scattering](#page-20-0)
- 6. [Closing remarks](#page-34-0)

Second-order derivatives

Minimization under linear PDE constraint:

 $\min_{p,u} J(p,u)$ s.t. $A(p,u,w) - F(w) = 0$ for all $w \in \mathcal{U}$

- Second-order derivative $\hat{J}'(p)(q, r)$ of $\hat{J}(p) := J(u(p))$? Useful e.g. to
	- \rhd Find q solving $\widehat{J}''(p)(q,r) + \widehat{J}'(p)r = 0$ for all r (Newton step / descent dir. based on $\partial_p \widehat{J}(p) = 0$, minimize quadratic approx. of $\widehat{J}...$)
	- \triangleright Evaluate / check second-order optimality conditions
- Main idea: differentiate first-order derivative. Adjoint-solution approach (for $J = J(u)$) gives

 $\widehat{J}'(p)r = -\partial_p A(p, u(p), \lambda(p))r$

Then

 $\hat{J}^{\prime\prime}(p)(q,r)=-\partial_{p}A(p,u^{\prime}(p)q,\lambda(p)\big)r-\partial_{p}A(p,u(p),\lambda^{\prime}(p)q\big)r-\partial_{pp}A(p,u(p),\lambda(p)\big)(q,r)$ with the forward and adjoint solution derivatives u' and λ' satisfying $A(u'(p)q, w, p) = -\partial_p A(u(p), w, p)$ for all $w \in U$ $A(w, \lambda'(p)q, p) = -\partial_p A(u(p), w, p)$ for all $w \in \mathcal{U}$

For P-dim. parameter approximation setting:

 \triangleright Evaluation of $\widehat{J}''(p)(q, \cdot)$: needs $u(p), \lambda(p), u'(p)q, \lambda'$ $(4$ solutions)

 \triangleright Evaluation of $\widehat{J}'(p)$: needs $u(p), \lambda(p)$, and $u'(p)r, \lambda'(p)r$ for all r $(2+2P$ solutions)

Method used e.g. in full-waveform inversion [Metivier et al. 2012].

1. [Introduction](#page-2-0)

- 2. [Time-independent case](#page-7-0)
- 3. [Linear time-dependent case](#page-13-0)
- 4. [Second-order derivatives](#page-18-0)

5. [Topological derivatives for qualitative inverse scattering](#page-20-0)

6. [Closing remarks](#page-34-0)

Wave-based identification

• Standard approach: PDE-constrained minimization of (e.g. output least-squares) cost functional:

$$
\min_{B} \mathcal{J}(B), \quad \text{e.g. } \mathcal{J}(B) := J(u_{\text{B}}) = \frac{1}{2} \int_{M} |u_{\text{B}} - u_{\text{obs}}|^{2} dM
$$

Entails repeated evaluations of forward (and adjoint if gradient-based) solutions $u_{\rm B}$

- Impetus for development of non-iterative, qualitative, sampling-based identification. General idea: focus on finding the support of B, define a function ϕ to determine whether
	- $z \notin B$ or $z \in B$ based on value $\phi(z)$ at sampling points z.
		- Linear sampling method (Colton, Kirsch '96), factorization method (Kirsch'98) Mathematically well-justified; require abundant data
		- Topological derivative (this talk):

Conditional partial mathematical justification so far; any overdetermined data

A Qualitative Approach to Inverse Scattering Theory (F. Cakoni, D. Colton, 2014)

Topological derivative concept (topology optimization)

TD: sensitivity analysis tool [Eschenauer et al 94; Sokolowski, Zochowski 99; Garreau et al 01. . .]

• Initially introduced and applied for topology optimization

• Later proved useful also for qualitative flaw identification PhD G. Delgado (2014), adv. G. Allaire — Topology optimization combining topological and shape derivatives [Topological derivatives for qualitative inverse scattering](#page-20-0)

Topological derivative concept (conducting inclusion identification)

• Objective functional (as example): $\widehat{J}(D) = J(u_D) = \frac{1}{2}$ Z $\int_{\partial\Omega}|u_D-u^{\mathfrak{m}}|^2\,\mathrm{d}S$

• Consider small trial penetrable inclusion $D_{\varepsilon} = z + \varepsilon \mathcal{D} \in \Omega$ ($\mathcal{D}, \Delta \sigma$ prescribed)

u: background, u_D : (true or trial) object D, u_{ε} : small trial object D_{ε}

- J has expansion $J(u_\varepsilon)=J(u)+\varepsilon^d\mathcal{T}(\mathbf{z})+o(\varepsilon^d)$.
- $\mathcal{T}(z) = \mathcal{T}(z; \mathcal{D}, \sigma, \Delta \sigma)$: topological derivative (TD) of J at $z \in \Omega$.

2ε z

 $D_\varepsilon(\sigma+\Delta\sigma)$

TD as imaging functional for qualitative flaw identification

- Connects qualitative inverse scattering to PDE-constrained approaches
	- ▷ Framework allowing to use any available data
	- ▷ Most developments to date in connection with (acoustic, elastodynamic, electromagnetic) linear wave models
	- ▷ Bounded or unbounded propagation domains
- Many empirical validations of this heuristic even for macroscopic defects
	- ▷ using synthetic data (many references)
	- ▷ using experimental data [Tokmashev, Tixier, Guzina 2013].
	- ▷ simplified variants, experimental data [Dominguez et al. 2005, Rodriguez et al. 2014].
- Heuristic proved in some cases:
	- ▷ far-field data, medium perturbation in zeroth-order PDE term, "moderate" scatterers [Bellis, B, Cakoni 2013],
	- ▷ near-field data, medium perturbation in leading-order PDE term, "moderate" scatterers [B, Cakoni 2019; B. 2022],
	- ▷ small obstacles [Ammari et al. 2012, Wahab 15],
- High-frequency behavior [Guzina, Pourahmadian 2015] (TD emphasizes boundaries).
- Usually want to compute the field $z \mapsto \mathcal{T}(z) \implies$ Purely numerical evaluation impractical
- Analytical TD formulas rely on asymptotic approximation of u_{ε} . Several approaches, e.g.:
	- \rhd Isolate finite region $C \subset \Omega$ around $D_{\varepsilon}(z)$, asymptotic form of DtN on ∂C
	- \triangleright Find asymptotic form of shape derivative (homothetic dilatation of D_{ε}) as $\varepsilon \to 0$;
	- \triangleright Find asymptotic form of (volume or boundary) integral equation (this lecture)

Topological derivative: evaluation using adjoint solution

Focus here on medium perturbations in leading-order PDO term

- \bullet $\mathcal{T}(\mathsf{z})$ found as leading-order contribution in $|J'(u)(u_\varepsilon-u)|$ as $\varepsilon\to0$
- Variational formulations for background, perturbed and adjoint solutions: $A(u, w) = F(w)$ $\forall w \in \mathcal{U}$ (background) $(\Delta \sigma \nabla u_{\varepsilon}, \nabla w)_{D_{\varepsilon, z}} + A(u_{\varepsilon}, w) = F(w)$ $\forall w \in \mathcal{U}$ (perturbed) $A(w, \lambda) = J'(u)w \quad \forall w \in \mathcal{U}$ (adjoint) • Combine with $w = \lambda, -\lambda, u_{\varepsilon} - u$: $A(u, \lambda) = F(\lambda)$ $-\big(\,\Delta{\sigma}\mathbf{\nabla} u_\varepsilon\, , \mathbf{\nabla}\lambda\,\big)_{D_{\varepsilon\,,\,2}}-\mathit{A}(u_\varepsilon\,,\lambda)=-\mathit{F}(\lambda)$ $A(u_{\varepsilon}-u,\lambda)=J'(u)(u_{\varepsilon}-u)$ $\overline{\mathcal{N}}$ \int $\partial_{u}J(u)(u_{\varepsilon}-u)=-\big(\Delta\sigma\mathbf{\nabla}u_{\varepsilon}\, , \mathbf{\nabla}\lambda\,\big)_{D_{\varepsilon}\, ,\, 2}$

• Use $\nabla \lambda = \nabla \lambda(z) + o(1)$ and (known) asymptotic approximation in $D_{\varepsilon, z}$ of the form

$$
\begin{cases}\nu_{\varepsilon}(\mathbf{x}) = u(\mathbf{z}) + \varepsilon \mathbf{U}(\mathbf{x}/\varepsilon) \cdot \nabla u(\mathbf{z}) + o(\varepsilon) \\
\nabla u_{\varepsilon}(\mathbf{x}) = \nabla \mathbf{U}(\mathbf{x}/\varepsilon) \cdot \nabla u(\mathbf{z}) + o(1)\n\end{cases}\n\quad \text{in } D_{\varepsilon,z} \quad (\mathbf{U} = \mathbf{U}(\cdot; \mathcal{D}, \sigma, \Delta \sigma))
$$

• Topological derivative:

$$
J(u_{\varepsilon}) = J(u) + \varepsilon^{d} \mathcal{T}(\mathbf{z}) + o(\varepsilon^{d}) \quad \text{with} \quad \mathcal{T}(\mathbf{z}) = -\nabla u(\mathbf{z}) \cdot \mathbf{A} \cdot \nabla \lambda(\mathbf{z})
$$

$$
\mathbf{A} = \mathbf{A}(\mathcal{D}, \sigma, \Delta \sigma) = \int_{\mathcal{D}} \Delta \sigma \nabla \mathbf{U} \, dV \text{: polarization tensor (known analytically for simple } \mathcal{D})
$$

Topological derivative: evaluation using adjoint solution

 $J(u_{\varepsilon}) = J(u) + \varepsilon^{d} \mathcal{T}(z) + o(\varepsilon^{d})$ with $\mathcal{T}(z) = -\nabla u(z) \cdot \mathbf{A} \cdot \nabla \lambda(z)$

- In practice: (i) compute background and adjoint solutions, (ii) evaluate $z \mapsto \mathcal{T}(z)$
- Similar TD formulas in other cases (Maxwell, elasticity, time-harmonic or transient waves...)
- Computation of the TD field:
	- Background and adjoint solutions u, \hat{u} defined on same (reference) configuration \implies Evaluation of \hat{u} and τ at moderate extra cost
	- Computation of $T(z)$ straightforward with standard methods (FEM, BEM...)
	- Experimental information exploited via the adjoint solution \hat{u}
- Corresponding results available in many other cases, e.g.
	- Potential problems, elasticity: B, Delgado (2014); Delgado, B (2015); Garreau, Guillaume, Masmoudi (2001); Novotny et al. (2003); Sokolowski, Zochowski (2001); Vogelius, Volkov (2000); Schneider, Andrä (2013);
	- Acoustics: Feijoo (2004); Guzina, B (2006); Nemitz, MB (2008)
	- Electromagnetism: Masmoudi, Pommier, Samet (2005);
	- Elastodynamics: Guzina, B (2004); Guzina, Chikichev (2007); Bellis, Impériale (2013)
	- Time domain: Dominguez, Gibiat, Esquerré (2005); B (2006); Amstutz, Takahashi, Wexler (2008); Tokmashev, Tixier, Guzina (2013)
	- Cracks: Amstutz, Horchani, Masmoudi (2005); Bellis, B (2012); B (2011)
	- Image processing: Auroux, Jaafar Belaid, Rjaibi (2010); Larnier, Masmoudi (2013)
	- Related imaging functionals: Rodriguez, Sahuguet, Gibiat, Jacob (2012)

[Topological derivatives for qualitative inverse scattering](#page-20-0)

 x_1

Example: FEM-based computation of T (2D time-domain wave eqn.)

Identification of impenetrable scatterer(s) in 2-D acoustic medium.

• Normalized scalar wave equation

 $\Delta u_{{\rm B}}^{(k)} - \partial_{tt} u_{{\rm B}}^{(k)} = 0$ $\partial_n u_8^{(k)} = \begin{cases} 1 & \text{(on } S_k \\ 0 & \text{(on } S_k \end{cases}$ 0 (on S_j , $j \neq k$) $\partial_n u_8^{(k)} = 0$ (on ∂B)

- Matlab (very simple) implementation, T3 elements.
- Newmark time-marching $(\beta = \frac{1}{4}, \gamma = \frac{1}{2})$, inconditionally stable)
- $M = S_1 \cup S_2 \cup S_3 \cup S_4$ (simulated measurements for $0 \le t \le T$)

$$
\mathcal{J}^{(k)}(B) = \frac{1}{2} \int_0^T \int_{S_1 + S_2 + S_3 + S_4} |u_B^{(k)} - u_{\text{obs}}^{(k)}|^2 \, \mathrm{d} s \, \mathrm{d} t
$$

Computation of synthetic data $u_{obs}^{(k)}$ $\sum_{obs}^{(k)}$ Computation of $u^{(k)}$ and $\hat{u}^{(k)}$

Bellis, B, Int. J. Solids Struct. (2010)

FEM-based computation of T : identification of a single scatterer

Bellis, B, Int. J. Solids Struct. (2010)

FEM-based computation of T : identification of a single scatterer

Bellis, B, Int. J. Solids Struct. (2010)

M. Bonnet (POems, ENSTA) [Adjoint solution method for inverse and optimization problems](#page-0-0) 25 / 31

FEM-based computation of T : identification of a single scatterer

FEM-based computation of T : simultaneous identification of a multiple scatterer

$k = 1, 2, 3, 4,$ $T = 2, \alpha = 0.5$

Example: Imaging of interface cracks (3-D transient elasticity, FEM)

- FEM-based time domain 3D simulations in *stiff/soft* bi-material domain
- Gaussian time distribution of compressional loading on top face
- Adimensionalization w.r.t. longitudinal wave velocity, $T = 1$
- Observation on top face

• Topological derivative $\mathbb{T}(\cdot,T) \leq 0$ at interface

- Extension to multilayered domains
- Study of other type of interface, e.g. fiber reinforced composites

Experimental study (Tokmashev, Tixier, Guzina 2013)

Figure 2. Three-dimensional motion sensing via laser Doppler vibrometer (LDV) system.

Figure 4. Testing configuration: (a) photograph of the damaged plate, and (b) boundary conditions and spatial arrangement of the LDV scan points for five individual source locations $(S_k^{\text{piezo}}, k = \overline{1, 5}).$

Topological derivative $z \mapsto \mathcal{T}(z)$ for $J(u_D) = \frac{1}{2}$ \int_0^T 0 Z $\int_S |\boldsymbol{u}_D - \boldsymbol{u}^m|^2 dS dt$

piezo

1. [Introduction](#page-2-0)

- 2. [Time-independent case](#page-7-0)
- 3. [Linear time-dependent case](#page-13-0)
- 4. [Second-order derivatives](#page-18-0)
- 5. [Topological derivatives for qualitative inverse scattering](#page-20-0)
- 6. [Closing remarks](#page-34-0)

[Closing remarks](#page-34-0)

Closing remark: different derivatives but same adjoint solution

- Assume fixed basic setting (physical configuration, objective function).
	- e.g. conductivity problem with objective function $J(u) = \frac{1}{2}$

Adjoint solution λ only depends on (choice of) J. Here:

 \triangleright Material parameter perturbation $(\sigma \rightarrow \sigma + s)$:

$$
\widehat{J}(\sigma + s) - \widehat{J}(\sigma) = \int_{\Omega} s \nabla u \cdot \nabla \lambda \, dV + o(||s||)
$$

 \rhd Inclusion shape perturbation $(D \to D+\theta(D))$:

$$
\widehat{J}(D+\theta(D))-\widehat{J}(D)=\int_{\partial D}\Delta\sigma(\nabla_{\!S}u\cdot\nabla_{\!S}\lambda)\theta\cdot\boldsymbol{n} dV+o(\|\theta\|)
$$

- \triangleright Topology change via small-inclusion nucleation ($\emptyset \to D_{\varepsilon,z}(\Delta\sigma)$): $\widehat{J}(D_{\varepsilon},z) - \widehat{J}(\emptyset) = \varepsilon^d \, \boldsymbol{\nabla} u(z) \cdot \boldsymbol{A}(\mathcal{D},\sigma,\Delta \sigma^{\star}) \cdot \boldsymbol{\nabla} \lambda(z) + o(\|\varepsilon^d\|)$
- Formulas are bilinear in same (forward and adjoint) solutions, differ in details.
- One adjoint solution per objective function, applies (even simultaneously) to all types of sensitivity

See e.g. Céa, Garreau, Guillaume, Masmoudi 2000

Z

 $\int_{\partial\Omega}|u-u^{\mathsf{m}}|^2\,\mathsf{d}\mathsf{S}$

Thank you for listening! Any questions?