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Concept of error in constitutive equation

Identification of material constitutive properties

Generic problem: Identify (possibly heterogeneous) material parameters from overdetermined
data, e.g.:

• kinematic data on the boundary;

• vibrational data (eigenfrequencies, eigenmodes at sensors);

• full-field kinematic response of solid under dynamical excitation...

σ.n = g(t)

Ωm (u = um)

C(x) =?

Identification often based on minimizing a data misfit functional

• (weighted) least squares...;

• Reciprocity residuals (reciprocity gap method, virtual fields method);

• Bayesian approaches;

• Error in constitutive equation (ECR)
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Concept of error in constitutive equation

Concept of error in constitutive equation (ECR)

• Simplest version of ECR (small-strain linear elasticity):

E(u,σ,C) :=
1

2

∫
Ω
(σ − C :ε[u]) :C−1 : (σ − C :ε[u]) dV

Ẽ(C) := min
u∈KA,σ∈SA

E(u,σ,C)

• Ẽ(C): Energy-based measure of mismatch between KA and SA spaces for given domain,
material and loading =⇒ mechanically meaningful cost functional.

▷ First introduced for error estimation in FEM [Ladevèze, Leguillon 1983];
▷ Soon also proved useful for identification problems [e.g. Reynier 1990]
▷ Similar ideas independently in EIT [Kohn, Vogelius, McKenney, c. 1990]
▷ Also useful for Cauchy / data completion problems [Andrieux, Ben Abda 2006]
▷ Plasticity, damage... [e.g. Latourte et al. 2007, Marchand et al. 2018]
▷ Special case of Fenchel error =⇒ ECR for generalized standard materials

• Time-harmonic formulation for e.g. FE model updating
[e.g. Reynier 90; Moine 97; Deraemaeker 01; Banerjee et al. 13; Aquino, B 19; many more]

• Time domain formulation
[Allix, Feissel, Nguyen 05; Allix, Feissel 06] (spatially 1D), [Aquino, B 14]
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Concept of error in constitutive equation

Error in constitutive relation (ECR)

E(v, τ ,C) = 0 ⇐⇒ (elastic) constitutive eq. satisfied (in L2(Ω))

• Hence, elastic equilibrium problem, e.g.

v = u on Su (compatibility)

−div τ = f in Ω, τ ·n = t on ST (equilibrium)

τ = C :ε[v] in Ω (constitutive)

as ECR minimization (for given material):

(u,σ) = arg min
(v,τ)∈C(ū)×S(t̄, f)

E(v, τ ,C)

Typically: KA =
{
v ∈H1(Ω), v satisfies (compatibility)

}
SA =

{
τ ∈Hdiv(Ω), τ = τ s and satisfies (equilibrium)

}
• Combines potential and complementary energy minimizations:

E(v, τ ,C) = P(v,C) + P⋆(τ ,C)

P(v) =
1

2

∫
Ω
ε[v] :C :ε[v] dV −

∫
Ω
ρf .v dV −

∫
ST

t̄.v dS

P⋆(τ ) =
1

2

∫
Ω
τ :C−1 :τ dV −

∫
Su

[τ .n].ū dSx
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Concept of error in constitutive equation

Variational formulations, error estimation

This retrieves well-known uncoupled minimizations of potential and complementary energies:

u = arg min
v∈C(ū)

P(v,C) σ = arg min
τ∈S(t̄, f)

P⋆(τ ,C)

(i) E(u,σ,C) = E(C) = 0 indicates that C is consistent with kinematic and static data.
Performing either minimization suffices.

• E.g. u = arg min
v∈C(ū)

P(v,C) then σ = C :ε[u]

(ii) Eh(uh,σh,C) = Eh(C) ≥ 0 allows to defini error indicators additive w.r.t. finite elements

• Original motivation for introducing the ECR concept

(iii) E(u,σ,C) = E(C)> 0 indicates that C is not consistent with kinematic and static data.

• E.g. material identification / imaging problem with incorrectly known constitutive properties.
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Concept of error in constitutive equation

Generalization to other constitutive models

• (elastic) ECR given in terms of free energy and conjugate potentials ψ,ψ⋆

E(v, τ ,C) =
∫
Ω

(
ψ(ε[v]) + ψ⋆(τ )− τ :ε[v]︸ ︷︷ ︸

Legendre-Fenchel gap, ≥ 0

)
dV

ψ(ε) := 1
2
ε :C :ε, ψ⋆(τ ) := 1

2
τ :C−1 :τ .

• More generally (small-strain nonlinear elasticity), same definition of E(v, τ ,C) if
▷ ψ: convex free energy density with ψ ≥ 0 and ψ(0) = 0;
▷ ψ⋆(τ ): (convex) conjugate potential

ψ⋆(τ ) := sup
ε

(
τ :ε− ψ(ε)

)
• Further generalization: generalized standard materials (GSMs) [Halphen, Nguyen 75;

Germain, Nguyen, Suquet 83], in terms of free energy ψ and dissipation φ potentials:

τ = τ rev + τ irr = ∂εψ(ε,α) + ∂ε̇φ(ε̇, α̇), A = −∂αψ(ε,α) = ∂α̇φ(ε̇, α̇)

(α: internal variables, A: conjugate thermodynamic forces). ECR functionals then defined
in terms of Legendre-Fenchel gaps

ψ(ε,α) + ψ⋆(τ rev,A)− τ rev :ε+A :α ≥ 0,

φ(ε̇, α̇) + φ⋆(τ irr,A)− τ irr : ε̇−A :α̇ ≥ 0.

ECR functionals may be defined (using Legendre-Fenchel gaps) for all GSMs.
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Concept of error in constitutive equation

ECR-based material identification

• Minimization of pure ECR:

C = arg min
B∈Q

{
min

v∈KA,τ∈SA
E(v, τ ,B)

}
KA =

{
v ∈H1(Ω), v verifies all kinematic constraints and data

}
SA =

{
τ ∈Hdiv(Ω), τ = τ s and verifies all balance constraints

However, exact imposition of noisy data usually inadvisable.

• Minimization of modified ECR (MECR):

Λκ (v, τ ,C) := E(v, τ ,C) + κD(u−uobs)

E : original ECR, D : quadratic≥ 0, e.g. D(w) =
1

2

∫
Ωm

|w|2 dV.

▷ Enforces kinematic data via penalization (so data not embedded in KA space)
▷ κ: tunable penalty (or coupling) parameter, akin to regularization (see later)

• Reduced MECR functional:

(u,σ) := arg min
v∈KA,τ∈SA

Λκ (v, τ ,C), Λ̃κ (C) := Λκ (u,σ,C) (PM)

▷ Quadratic partial minimization problem (see later), i.e. linear stationarity eqs.
▷ u=u[C],σ=σ[C] best compromise between (i) constitutive guess C, (ii) measurements
▷ Λ̃κ (C) ̸=0: residual MECR value reflecting incorrectly-known material.
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Concept of error in constitutive equation

ECR-type functional for electrical impedance imaging

• Equations (v: potential, e: electric field, q: current):

div q(x) = 0, q(x) = a(x)e(x), e(x) = −∇v(x)
• ECR-type functional for N experiments with data v̄ for v and q̄ for q.n on ∂Ω:

E(a, v1, . . . , vN , q1, . . . , qN ) =
N∑
i=1

∫
Ω
∥a1/2∇v + a−1/2q∥2 dV

Note:

∥a1/2∇v + a−1/2q∥2 =
1

a
|q+a∇v∥2 =

1

a
|q−ae∥2

(a) “true” σ; reconstructions (b) no data noise.

Kohn R. V., Vogelius M., Comm. Pure Appl. Math. 40:745–777 (1987)

Kohn R. V., McKenney A., Inverse Problems 6:389–414 (1990)
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Concept of error in constitutive equation

Energy (ECR-like) functional for ill-posed boundary value problems

k∆u = 0Ω

u = ū, u,n = q̄

u =?, u,n =?

E(û, q̂) =
∫
Ω
k∇(u1 − u2)·∇(u1 − u2) dV

k∆u1 = 0Ω Ω

u,n = q̄ u = ū

u,n = q̂u = û

k∆u2 = 0

Andrieux S., Baranger T., Ben Abda A., Inverse Problems 22:115–133 (2006)

M. Bonnet (POEMS, ENSTA) Error in constitutive relation for material identification 9 / 51



Time-harmonic elastodynamics

1. Concept of error in constitutive equation
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Time-harmonic elastodynamics

Framework

• Elastodynamic ECR-based reconstruction of heterogeneous elastic properties

• No prescribed boundary data:

▷ Well-posed forward problem a priori unclear (in contrast to usual inversion sitiations);

• This talk (based on [Aquino, B; SIAP (2019)]): internal kinematical data only

▷ (possibly overdetermined) boundary measurements may also be accounted for
▷ Cases with well-posed BCs covered as special cases

Ω

∂Ω = Γ (BC unknown)

Ωm (u = um)

Balance (SA):
(
σ, ε[w]

)
Ω
− ω2

(
ρu,w

)
Ω

= F(w) for all w ∈W :=H1
0(Ω),

Kinematic compatibility (KA): u ∈ U := H1(Ω), ε[u] = 1
2
(∇u+∇uT) in Ω,

Constitutive (linear elastic): σ = C :ε[u] in Ω.
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Time-harmonic elastodynamics

Modified ECR (MECR) functional

MECR functional:

Λκ (u,σ,C) := E(u,σ,C) + κD(u−uobs)

E(u,σ,C) := 1
2

∫
Ω
(σ − C :ε[u]) :C−1 : (σ − C :ε[u]) dV

D : quadratic > 0, e.g. D(w) = 1
2

∫
Ωm

|w|2 dV

▷ Enforces kinematic data via penalization (so data not embedded in KA space)

▷ κ: tunable penalty (or coupling) parameter, akin to regularization (see later)

Reduced MECR:

(u,σ) := arg min
v∈KA,τ∈SA

Λκ (v, τ ,C), Λ̃κ (C) := Λκ (u,σ,C) (PM)

▷ Quadratic minimization problem (see later), i.e. linear stationarity eqs.

▷ u,σ best compromise between (i) constitutive guess C, (ii) measurements

▷ Λ̃κ (C) ̸=0: residual MECR value reflecting incorrectly-known material.
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Time-harmonic elastodynamics

Constitutive identification problem

Full-space approach:

(u,σ,C) := arg min
v∈U, τ∈S(v),C∈Q

Λκ (v, τ ,C).

Reduced-space approach: based on the reduced MECR:

(u,σ) := arg min
v∈U, τ∈S(v)

Λκ (v, τ ,C), Λ̃κ (C) := Λκ (u[C],σ[C],C) (PM)

(at least) two approaches for the constitutive identification problem:

1. Minimize Λ̃κ (C) (e.g. using CG, BFGS...) C⋆ := arg min
C∈Q

Λ̃κ (C)

Each evaluation of Λ̃κ (C), Λ̃′
κ (C) needs to solve (PM).

2. Minimize Λκ (u,σ,C) via alternate directions

• Field update (global) via (PM), C fixed: u,σ

• Constitutive update (local, often closed-form) C⋆ := arg min
C∈Q

Λκ (u,σ,C)

Problem (PM) plays a key role.
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Time-harmonic elastodynamics

Stationarity equations

Lagrangian (incorporating interior dynamical balance constraint with multiplier w ∈ H1
0(Ω)):

L(u,σ,w,C) := E(u,σ,C) + κD(u−uobs) +
{(

σ, ε[w]
)
Ω
− ω2

(
ρu,w

)
Ω
−F(w)

}
,

w ∈ H1
0(Ω)

First-order optimality conditions:

∂uL = 0, ∂σL = 0, ∂wL = 0, ∂CL = 0 ∂uL = 0, ∂σL = 0, ∂wL = 0, ∂CL = 0∂uL = 0, ∂σL = 0, ∂wL = 0, ∂CL = 0 ∂uL = 0, ∂σL = 0, ∂wL = 0, ∂CL = 0

(i) Partial minimization of (u,σ) 7→ Λκ (u,σ,C) := E(u,σ,C) + κD(u−uobs):

σ = C :ε[u−w] ,
A(w, w̃,C) + B(u, w̃,C) = F(w̃) for all w̃ ∈W
B(ũ,w,C)− κD(u, ũ) = −κD(uobs, ũ) for all ũ∈U

B(·, ·,C) := A(·, ·,C)−ω2M(·, ·): dynamical stiffness bilinear form

(i) Partial minimization of (u,σ) 7→ Λκ (u,σ,C) := E(u,σ,C) + κD(u−uobs):

σ = C :ε[u−w] ,
A(w, w̃,C) + B(u, w̃,C) = F(w̃) for all w̃ ∈W
B(ũ,w,C)− κD(u, ũ) = −κD(uobs, ũ) for all ũ∈U

B(·, ·,C) := A(·, ·,C)−ω2M(·, ·): dynamical stiffness bilinear form

(ii) Nonlinear stationarity equation on C:

ε[u]⊗ε[u]− [C−1 :σ]⊗ [C−1 :σ] = 0 in Ω

• Until convergence, σ ̸= C :ε[u] (unlike in usual PDE-constrained approaches)
• Coupled stationarity problem, replaces usual (forward / adjoint) pair of problems
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Time-harmonic elastodynamics

Well-posedness of stationarity problem (finite-dimensional case)

• Coupled stationarity problem (replaces forward + adjoint):

A(w, w̃,C) + B(u, w̃,C) = F(w̃) for all w̃ ∈W
B(ũ,w,C)− κD(u, ũ) = −κD(uobs, ũ) for all ũ∈U

• Let dim(U) = n, dim(W) = m≤n.

A : W×W → R −→ A ∈ Rm×m

B = A−ω2M : U ×W → R −→ B ∈ Rm×n

D : U ×U → R −→ D ∈ Rn×n

• Discretized stationarity problem (BC setup such that A invertible):[
A B

BT −κD

]{
w

u

}
=

{
F

κDum

}
• For any (u,w) solving the homogeneous system:

uTBTA−1Bu+ κuTDu = 0

Discrete stationarity system therefore well-posed if N(B) ∩N(D) = {0}
• Interpretation: available data must (more than) compensate lack of information on BCs
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Time-harmonic elastodynamics

Well-posedness of stationarity problem (continuous case)

• Let H :=
{
u∈U , | B(u, w̃,C) = 0 for all w̃ ∈W

}
underdetermined BCs on u (recall W ⊂U)

Theorem (W. Aquino, MB, 2019):

Assume D coercive on H×H (i.e. data compensates insufficient BC information).
The two-field stationarity problem

A(w, w̃,C) + B(u, w̃,C) = F(w̃) for all w̃ ∈W
B(ũ,w,C)− κD(u, ũ) = −κD(uobs, ũ) for all ũ∈U

has a unique solution (u,w)∈U ×W, which is continuous in F ,uobs

Proof method: Treat stationarity pb. as perturbed mixed problem [Boffi, Brezzi, Fortin 13].

Highlights: Stationarity problem is well-posed if sufficient full-field data available
• holds for all frequencies
• holds for (almost) all cases of BCs (including underdetermined BCs)
• includes well-posed BC case, for which U = W =

{
u∈H1(Ω), u= 0 on ΓD

}
(say)

Shortcoming: Assumed coercivity of D on H×H in H1-norm.
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Time-harmonic elastodynamics

Comparison with minimization of measurement misfit

• Conventional PDE-constrained constitutive identification: relation σ = C :ε[u] enforced.

• Lagrangian:

L(u,w,C) := D(u−uobs) +
{(

C :ε[u], ε[w]
)
Ω
− ω2

(
ρu,w

)
Ω
−F(w)

}
, w ∈ H1

0(Ω)

• First-order optimality conditions:

∂uL = 0, ∂wL = 0, ∂CL = 0

Forward and adjoint problems (coupled if W ≠U):

B(u, w̃,C) = F(w̃) for all w̃ ∈W
B(ũ,w,C)−D(u, ũ) = −D(uobs, ũ) for all ũ∈U
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Time-harmonic elastodynamics

Magnetic resonance elastography (S. Kurtz et al., Montpellier U. / Sherbrooke U.)

Coupled forward-adjoint implemented (for freq. domain elastodynamic sensing using 3D internal
kinematic data) within a multizone approach

S. Kurtz, PhD 2023
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Time-harmonic elastodynamics

Hessian of reduced MECR functional

• Consider reduced MECR functional Λ̃κ (C) := Λκ (u,σ,C)
• Expression of Hessian Λ̃′′

κ (C) established in terms of uC ,wC and u′
C ,w

′
C (not shown)

• Large-κ expansion of stationarity solution (suitable if data noise low enough):

(u,wC) = (u0,w0) + κ−1(u1,w1) + . . . (E)

with (uℓ,wℓ) (ℓ=0, 1, 2, . . .) defined as solutions of two-field problems.
• Insert (E) in Λ̃′′

κ (C) gives

Theorem (MB, W. Aquino, 2019)

For any Ĉ such that supp(Ĉ)⊂Ωm:

Λ̃′′
κ (C)[Ĉ] = Λ̃′′

0 (C)[Ĉ] + κ−1Λ̃′′
1 (C)[Ĉ] + o(κ−1)

where Λ̃′′
0 (C)[Ĉ] ≥ 0, Λ̃′′

1 (C)[Ĉ] sign-indefinite

• Λ̃′′
κ is positive, i.e. Λ̃κ is “asymptotically convex”, in the κ → ∞ limit if supp(Ĉ)⊂Ωm

• No such result available for L2 minimization, even with complete internal data
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Time-harmonic elastodynamics

Hessian of MECR functional

Ω= (0, 1), −(Eu′)′ − (2πf)2u = b, u(0)= u(1)= 0, E = χ[0,1/2]E1+χ[1/2,1]E2

κ=10−3 κ=10−1

κ=1 κ=105
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Time-harmonic elastodynamics

MECR-based alternate-direction reconstruction algorithm

∂CL = 0 =⇒ updating equations for the moduli.

• Assume unknown bulk and shear moduli BE , GE over element (groupings) E.

• Alternating direction minimization:

▷ At iteration q, available estimates Gq−1 and Bq−1 of moduli.
▷ Obtain uq and wq by solving the coupled systems of equations
▷ Update the moduli in each element or subdomain as

Bq =
∥sqk∥E,2
∥eqk∥E,2

, 2Gq =
∥sqk∥E,2
∥eqk∥E,2

where ek(sk): volumetric strain (stress) and ek(sk): deviatoric strain (stress)
associated with forward solution u and stress σ=C :ε[u−w].

• Correct updates Bq , Gq for possible violation of admissibility bounds.

• Morozov discrepancy criterion, if used: adjust κ to measurement noise δ through
enforcement of D(κ) = δ2 (outer loop)
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Time-harmonic elastodynamics

Morozov discrepancy criterion

• MECR functional: Λκ (X,w;κ) := E(X,w) + κD(X) with X := (u,σ,C)
• Set E(κ) := E(Xκ ,wκ ), D(κ) := D(Xκ ) with

(Xκ ,wκ ) := arg minX,w Λκ (X,w;κ)

Morozov discrepancy criterion: Seek Xκ , κ such that D(κ) = δ2 (δ: data noise)

Lemma: (i) κ 7→ E(κ) is increasing; (ii) κ 7→ D(κ) is decreasing.

Moreover (from limiting cases κ → 0 and κ → ∞):

• D(0) > 0 and D(∞) = 0;

• E(0) = 0 and E(∞) > 0

D

κ = 0

κ = ∞

D = δ2

E

Consequently:

If D(0) > δ2, there exists κ such that D(κ) = δ2 (fulfilling Morozov’s criterion)
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Time-harmonic elastodynamics

Morozov discrepancy criterion

Proof of lemma: (a) we have L′(κ) =
〈
∂XL,X′ 〉+ 〈

∂wL,w′ 〉+ ∂κL = D(κ) and also

L′(κ) = E′(κ) + κD′(κ) +D(κ); therefore E′(κ) + κD′(κ) = 0 .

(b) We have 0 = dκ
(〈
∂XL,X′ 〉+ 〈

∂wL,w′ 〉) =
(
L′(κ)−D(κ)

)′
.

Moreover:

0 = dκ
〈
∂wL,w′ 〉 (constraint verified for any κ),

0 = dκ
〈
∂XL,X′ 〉 (stationarity eqs. verified for any κ)

=
〈
∂2XXL, (X′,X′)

〉
+

〈
∂2XwL, (X′,w′)

〉
+

〈
∂XL,X′′ 〉+D′(κ)

=
〈
∂2XXL, (X′,X′)

〉
+D′(κ)

and
〈
∂2XXL, (X′,X′)

〉
≥ 0. Therefore D′(κ) ≤ 0 and, by (a), E′(κ) ≥ 0 .
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Time-harmonic elastodynamics

Example (2D reconstruction with 2D data and unknown BCs)

3.5 
cm 
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Target: B=18 kPa, G=4 kPa
Background: B=8 kPa, G=1.5 kPa
Testing frequencies 10 Hz, 30 Hz, 50 Hz, 70 Hz
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Aquino, B 19
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Time-harmonic elastodynamics

Example (2D reconstruction with 2D data): alternated dirs vs. BFGS

Babaniyi, Sanders, Aquino 2017
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Time-harmonic elastodynamics

Example (2D reconstruction with 2D data): alternated dirs vs. BFGS

Babaniyi, Sanders, Aquino 2017
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Time-harmonic elastodynamics

Example (2D reconstruction with 2D data): alternated dirs vs. BFGS

Babaniyi, Sanders, Aquino 2017
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Time-harmonic elastodynamics

2D example (Experimental data)

Aquino, Babaniyi, Bayat, Fatemi 2017
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Time-harmonic elastodynamics

2D example (Experimental data): imaging of shear modulus

Aquino, Babaniyi, Bayat, Fatemi 2017
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Transient elastodynamics

1. Concept of error in constitutive equation

2. Time-harmonic elastodynamics

3. Transient elastodynamics

4. Transient or time-harmonic viscoelasticity
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Transient elastodynamics

Modified ECR functional (transient, time-discrete)

Presentation after [B, Aquino, Inverse Problems (2014)]

• Time-stepping, tk = k∆t (0≤ k≤N)
• {u,v,a,σ} := {(uk,vk,ak,σk)0≤k≤N}:

time-discrete histories (displacement, velocity, acceleration, stress)
• Time-discrete MECR functional:

Λκ (u,σ,C) := EN (u,σ,C) + κDN (u) with e.g. DN (u) :=
1

2

N∑
k=1

∣∣uk − uobs,k

∣∣2
• Treat as constraints (i) initial and current interior balance eqns (in weak form)

(ii) Newmark(β, γ) update relations
• Minimization of Λκ : requires stationarity of Lagrangian L:

L(u,v,a,σ, ū, v̄, ā, C) := Λκ (u,σ,C)

+

N∑
k=0

{〈
σk , ε[ūk]

〉
+

〈
ρak , ūk

〉
−Fk(ūk)

}
+

N∑
k=1

{〈(
uk−uk−1−∆tvk−1−∆t2

[
(1−β)ak−1+βak]

)
, āk

〉
+

〈(
vk−vk−1−∆t

[
(1−γ)ak−1+γak

])
, v̄k

〉}
• Treatment valid for (more-general) α-generalized schemes (not discussed here)
• [Allix, Feissel, Nguyen 2005]: MECR for transient 1D case
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Transient elastodynamics

Stationarity problem

(a) ∂σkL = 0 =⇒ σk = C :ε[uk− ūk]

(b) ∂ūkL = 0, ∂v̄kL = 0, ∂ākL = 0 =⇒ forward problem for (u,v,a)

RHS depends on (ū, v̄, ā) – unusual!
Newmark

(c) ∂ukL = 0, ∂vkL = 0, ∂ak = 0 =⇒ backward problem for (ū, v̄, ā)

RHS depends on (u,v,a) – usual
adjoint Newmark

(d) ∂CL = 0 =⇒ Constitutive updating formulae

Newmark and adjoint Newmark obey same stability conditions.

Alternate-direction minimization

For each iteration of main minimization loop:

• partial minimization of Λκ (u,σ,C): solve (a,b,c) for (u⋆,v⋆,a⋆), (ū⋆, v̄⋆, ā⋆)
coupled forward-backward problem;

• partial minimization of Λκ (u⋆,σ⋆,C): solve (d) for C⋆
(analytical pointwise updating formulas =⇒ easy)

Coupled forward-backward problem (a,b,c) =⇒ major computational bottleneck
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Transient elastodynamics

Coupled forward-backward stationarity problem

Coupled system of stationarity equations, in block form:[
A B
BT −κD

]{
W
U

}
=

{
F

κDUm

}
,

where

• UT := {(uT
0,v

T
0,a

T
0), . . . , (u

T
N ,v

T
N ,a

T
N )} (kinematical history);

• WT := {(ūT
0, v̄

T
0, ā

T
0), . . . , (ū

T
N , v̄

T
N , ā

T
N )} (multiplier history);

• F: applied excitation;

• B: Newmark integrator, such that BU = G forward dynamical analysis;
BTW = H: backward dynamical analysis;

• A: (sym. s.p.d.) coupling matrix, from ECR part of Λκ ;

• D: (sym. s.p.d.) “mass matrix”, from L2 measurement residual part of Λκ .

Kinematical constraints: uk ∈U , ūk ∈W for all k.
Blocks B, BT are square if U = W, i.e. ΓD = Γ\ΓN
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Transient elastodynamics

Stationarity problem: circumventing the coupling bottleneck[
B −A
κD BT

]{
U
W

}
=

{
F

κDUm

}
,

Proposed remedy to coupling bottleneck: block-SOR iterative scheme:[
B 0

ηκD BT

]{
U(i+1)

W(i+1)

}
=

[
(1−η)B −ηA

0 (1−η)BT

]{
U(i)

W(i)

}
+

{
ηF

ηκDUm

}
.

(0<η< 2: relaxation parameter)

MB, W. Aquino,Inverse Problems, 2015
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Transient elastodynamics

Convergence of block SOR algorithm

• Block-SOR and Jacobi iteration matrices (U: stationarity solution):{
U(i+1)−U⋆
W(i+1)−W⋆

}
= Rα

{
U(i)−U⋆
W(i)−W⋆

}
(α = J, SOR)

• SOR converges iff ρSOR := ρ(RSOR)< 1
• Eigenvalues λ of RSOR and µ of RJ (simpler to evaluate) linked [Varga 62]

Proposition (MB, A. Aquino, 2015)

Let η0 := 2(1+ρJ)
−1. Then, ρSOR(η)< 1 for any η ∈]0, η0[. Moreover:

(a) min
η∈]0,η0[

ρSOR(η) = 1−η1 with η1 = 2
/(

1 + (1+ρ2J )
1/2

)
(b) ρJ = O(κ1/2), and hence lim

κ→∞
η0 = 0, lim

κ→∞
min

η∈]0,η0[
ρSOR(η) = 1

κ large (suitable for accurate data) (i) narrows convergence interval ]0, η0[
(ii) increases block-SOR iteration count
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Transient elastodynamics

2D example (block SOR assessment)

• Load: time-harmonic pressure on top side (duration 1s, freq. 1Hz);
bottom side clamped

• (B1, G1) = (3, 2); (B2, G2) = (6, 4)

• Full-field measured displacement for 1s duration

• Time step: ∆t=0.01s

• Meshes: 13,122 nodes (reconstruction, regular mesh),
19,216 nodes (data generation)

1

1

B

A
e1

e2

(B1, G1)

g = − sin(2πt)e2

(B2, G2)

0 0.5 1 1.5

η (SOR relaxation parameter)

0

20

40

60

80

100

It
er

at
io

n
s

ξ = 0.1

ξ = 0.25

ξ = 1.

ξ = 5.

ξ = 10.

Simulations by WA, using the Sierra/SDA code of SANDIA Natl. Labs.
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Transient elastodynamics

3D example (synthetic data)

• Load: time-harmonic pressure on top and side faces (duration 1s, freq. 1Hz);
bottom face clamped

• Full-field measured displacement for 1s duration

• Time step: ∆t=0.01s

• Meshes: 50,000 nodes (reconstruction, regular mesh),
75,000 nodes (data generation)

• 550,000 unknown moduli

B⋆ G⋆

M. Bonnet (POEMS, ENSTA) Error in constitutive relation for material identification 33 / 51



Transient elastodynamics

3D example (Synthetic data)

   G   B 

G⋆ B⋆ target

   G    B 

G⋆ B⋆ target

  G   B 

G⋆ B⋆ target

• About 200 MECR iterations;

• At most 5 SOR iterations per
MECE iteration
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Transient or time-harmonic viscoelasticity

1. Concept of error in constitutive equation

2. Time-harmonic elastodynamics

3. Transient elastodynamics

4. Transient or time-harmonic viscoelasticity
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Transient or time-harmonic viscoelasticity

Introduction

This part follows [B, Salasiya, Guzina; JMPS (2024)]

• Material characterization of lossy solids treated as linear viscoelastic: applications e.g.

▷ Account for lossy biological media in elastography
▷ Geomechanics, geophysics (dissipation linked to e.g. hydrocarbon reservoir parameters)

Viscoelastic characterization of rock specimens undergoing carbonation,

excited under ultrasonically plane stress condition.

• Use of interior data feasible: ultrasound, MRI, laser vibrometer in rock mechanics

• This work:

▷ Extension to linear viscoelasticity of elastodynamic MECR with missing BC info
Focus on case with interior measurement and no BC information

▷ Both transient and time-harmonic cases treated

This work, US side funded by Center on Geo-processes in Mineral Carbon Storage, US Dept. of Energy
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Transient or time-harmonic viscoelasticity

Linear viscoelastic solid as a generalized standard material

• Standard generalized material format for linear viscoelasticity:

σ[u] = σe[u] + σv[u]

σe[u] = ∂εψ, σv[u] = ∂ε̇φ, A[u] = −∂αψ = ∂α̇φ.

• Free-energy potential and dissipation potential of general form (must be convex)

ψ(ε,α) = 1
2

(
ε :Cε :ε+ 2ε :Cm :α+α :Cα :α

)
,

φ(ε̇, α̇) = 1
2

(
ε̇ :Dε : ε̇+ 2ε̇ :Dm :α̇+ α̇ :Dα :α̇

)
,

p = Cε,Cα,Dε . . .

▷ α: “viscoelastic strain” internal variable,
▷ Cε,Cα,Dε,Dα: 4th order tensors (maj + min symm., define positive quadratic forms,
▷ Cm,Dm: 4th order tensors (min. symm., maj. symm. for convenience), s.t. ψ,φ≥ 0.

• Viscoelastic strain

∂αψ + ∂α̇φ = 0 =⇒ α[u](t) = −D−1
α :Dm :ε(t)− F[Ĉ :ε](t)

Ĉ := Cm − Cα :D−1
α :Dm, F[s](t) =

∫ t

0
exp[−D−1

α :Cα(t−τ)] :D−1
α :s(τ) dτ

• Stress-strain relation:

σ[u](t) = CI :ε(t) +DI : ε̇(t)− ĈT:F[Ĉ :ε](t)

with instantaneous tensors

CI = Cε − Cm :C−1
α :Cm + ĈT :C−1

α : Ĉ, DI = Dε −Dm :D−1
α :Dm
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Transient or time-harmonic viscoelasticity

Inverse problem

• Identify (homogeneous or heterogeneous) VE parameters p = Cε,Cα,Dε . . . from interior
kinematic data uobs( • , t) or uobs( • , ω)

Ω

∂Ω = Γ (BC unknown)

Ωm (u = um)

• This work: MECR-based PDE-constrained approach

min
u,σ,p

E(u,σ, p) + κDT(u−uobs) s.t. u KA,σ DA DT(v) =
1
2

∫ T

0
D(v(t)) dt

• Conjugate potentials:

ψ⋆(σe,A) = max
ε,α

[
σe :ε−A :α− ψ(ε,α)

]
,

φ⋆(σv,A) = max
ε̇,α̇

[
σv : ε̇+A :α̇− φ(ε̇, α̇)

]
.

• Legendre-Fenchel gaps:

ϵψ(ε,α,σ
e,A) := ψ(ε,α) + ψ⋆(σe,A)− σe :ε+A :α ⩾ 0,

ϵφ(ε̇, α̇,σ
v,A) := φ(ε̇, α̇) + φ⋆(σv,A)− σv : ε̇−A :α̇ ⩾ 0.

• Chosen pointwise ECR: eECR(x, t) = ϵψ(x, t) + Tϵφ(x, t) .
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Transient or time-harmonic viscoelasticity

Example: standard linear solid

Cε = −Cm = C1, Cα = C1+C2, Dα = D, Dε = Dm = 0,

ψ(ε,α) = 1
2
(ε−α) :C1 : (ε−α) +

1

2
α :C2 :α, φ(ε̇, α̇) = 1

2
α̇ :D :α̇,

ψ⋆(σ,A) = 1
2
(σ−A) :C−1

2 : (σ−A) + 1
2
σ :C−1

1 :σ, φ⋆(A) = 1
2
A :D−1 :A.

D

C1

C2

σ[u] = σe[u] = C1 : (ε−α), A[u] = C1 : (ε−α)− C2 :α = Dα :α̇, α(t) = F[C1 :ε](t)

Pointwise Legendre-Fenchel gaps:

eψ = 1
2

(
σ−C1 : (ε−α)

)
:C−1

1 :
(
σ−C1 : (ε−α)

)
+ 1

2
(σ−A− C2 :α) :C−1

2 : (σ−A− C2 :α))

eφ = 1
2

(
A−D :α̇

)
:D−1 :

(
A−D :α̇

)
.
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Transient or time-harmonic viscoelasticity

MECR-based minimization

• Displacement spaces:

U := V, W :=
{
v ∈V, v= 0 on Γ

}
⊂ U

V: energy space, e.g. V = H1(Ω× [0, T ];Rd) (transient), V = H1(Ω;Rd) (time-harmonic)

• Interior balance of linear momentum, weak form (interior equations only):∫
Ω

∫ T

0

(
σ :ε[w] + ρü·w

)
dt dV = 0 ∀w ∈ W.

• Overall constitutive mismatch for given p (with X := (u,α,σe,σv,A)):

E(X, p) = Ee(ε[u],α,σe,A, p) + Ev(ε̇[u], α̇,σv,A, p) ,

Ee :=

∫
Ω

∫ T

0
ϵψ(ε,α,σ

e,A, p) dt dV, Ev :=

∫
Ω

∫ T

0
Tϵφ(ε̇, α̇,σ

v,A, p) dt dV.

• Modified ECR (MECR) functional:

Λκ(X, p) := E(X, p) + 1
2
κDT(u−uobs,u−uobs),

• Find compromise p,X (constitutive equations vs. data reproduction):
PDE-constrained minimization

min
X,p

Λκ(X, p) subject to u∈U and (weak) balance eq. .
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Transient or time-harmonic viscoelasticity

1st-order optimality conditions of MECR functional

min
X,p

Λκ(X, p) subject to u∈U and (weak) balance eq. .

• Lagrangian (Lagrange multiplier w ∈ W):

L(X,w, p) := Λκ(X, p)−
∫
Ω

∫ T

0

(
(σe+σv) :ε[w] + ρü·w

)
dt dV.

• 1st-order optimality conditions: stress and internal variables:

(a)
〈
∂σeL, σ̂e

〉
= 0 ∀ σ̂e, (c)

〈
∂AL, Â

〉
= 0 ∀ Â,

(b)
〈
∂σvL, σ̂v

〉
= 0 ∀ σ̂v, (d)

〈
∂αL, α̂

〉
= 0 ∀ α̂.

1st-order optimality conditions: kinematical variables:

(a)
〈
∂wL, ŵ

〉
= 0 ∀ ŵ,

(b)
〈
∂uL, û

〉
= 0 ∀ û,

1st-order optimality conditions: material parameters:〈
∂pL, p̂

〉
= 0 ∀ p̂.
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Transient or time-harmonic viscoelasticity

1st-order optimality conditions: local equations

Local stationarity equations (ε ≡ ε[u], η ≡ ε[w])

(a) 0 =

∫
Ω

∫ T

0

{
∂σeψ⋆ − ε− η

}
: σ̂e dt dV ∀σ̂e,

(b) 0 =

∫
Ω

∫ T

0

{
T
(
∂σvφ⋆ − ε̇

)
− η

}
: σ̂v dt dV ∀σ̂v,

(c) 0 =

∫
Ω

∫ T

0

{
∂Aψ

⋆ +α+ T
(
∂Aφ

⋆ − α̇
)}

:Â dt dV ∀Â,

(d) 0 =

∫
Ω

∫ T

0

{(
∂αψ +A

)
:α̂+ T

(
∂α̇φ−A

)
: ˙̂α

}
dt dV ∀α̂, α̂( • , 0)= 0.

Closed-form solution:

(a), (b), (c) =⇒


σe = Cε :ε+ Cm :α+ (CS

ε + Cm :C−1
α : Ĉ) :η − Cm :β,

σv = Dm :α̇+Dε : ε̇+ 1
T
DI :η − 1

T
Dm :β,

A = Dα :α̇+Dm : ε̇− 1
T
Dα :β,

( 1
T
Dα+Cα) :β = Dα : α̇+Dm : ε̇+ Cα :α+ Cm :ε+ Ĉ :η.

(d) =⇒ 0 = ∂αψ +A− T∂t
(
∂α̇φ−A

)
, 0 =

(
∂α̇φ−A

)
(T ),

=⇒ Dα : β̇ − Cα :β + Ĉ :η = 0, β(T ) = 0 using (a)-(c)

=⇒ β(t) = FR[Ĉ :ηR](t)
(
fR(t) = f(T − t)

)
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Transient or time-harmonic viscoelasticity

1st-order optimality conditions: local equations

(a), (b), (c) =⇒


σe = Cε :ε+ Cm :α+ (CS

ε + Cm :C−1
α : Ĉ) :η − Cm :β,

σv = Dm :α̇+Dε : ε̇+ 1
T
DI :η − 1

T
Dm :β,

A = Dα :α̇+Dm : ε̇− 1
T
Dα :β,

( 1
T
Dα+Cα) :β = Dα : α̇+Dm : ε̇+ Cα :α+ Cm :ε+ Ĉ :η. (⋆)

(d) =⇒ β(t) = FR[Ĉ :ηR](t)

• Use β in (⋆), to obtain

α(t) = α[u](t) + F[Dα : ( 1
T
β+ β̇)](t)

Finally, evaluate σ = σe+σv to find

σ(t) = σ[u](t) + St[w](t) St[w] = (CI+
1
T
DI) :η + ĈT :

(
α−α[u]−β

)
.

• Key property:∫ T

0
St[w] :η dt =

∫ T

0

{
η :

(
CS
ε +

1
T
DI

)
:η + 1

T
β :Dα :β + β̇ :Dα :C−1

α :Dα : β̇
}
dt ⩾ 0.

Purely elastic case much simpler: σ(t) = σ[u](t) + σ[w](t) = Cε :ε[u+w] sole local eqn.
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Transient or time-harmonic viscoelasticity

1st-order optimality conditions: global equations

• A priori: ∫
Ω

∫ T

0

(
σ :ε[ŵ] + ρü·ŵ

)
dt dV = 0 ∀ ŵ ∈W.∫

Ω

∫ T

0

{(
∂εψ − σe

)
:ε[û] + T

(
∂ε̇φ− σv

)
:ε[ ˙̂u]− ρw· ¨̂u

}
dt dV

+κ

∫ T

0
D(u−uobs, û) dt = 0 ∀ û∈U .

• Use σ = σ[u] + St[w], integrate by parts in time, use results from local stationarity cnds

and reciprocity identity
∫ T
0

(
σ[u] :ε[w]− σR[wR] :ε[u]

)
dt =

(
ε[w] :DI :ε[u]

)∣∣T
0
.

Obtain forward-backward (underdetermined / overdetermined) stationarity system for u,w:∫
Ω

∫ T

0

(
σ[u] :ε[ŵ] + ρü·ŵ

)
dt dV +

∫
Ω

∫ T

0
St[w] :ε[ŵ] dt dV = 0 ∀ ŵ ∈W,

u(·, 0) = u̇(·, 0) = 0 in Ω,∫
Ω

∫ T

0

(
σR[wR] :ε[û] + ρẅ·û

)
dt dV − κ

∫ T

0
D(u, û) dt = −κ

∫ T

0
D(uobs, û) dt

∀ û∈U ,
w(·, T ) = ẇ(·, T ) = 0 in Ω.

• Unique solvability for (u,w) ∈ U ×W expected if (i) sufficient data uobs, (ii) cnds. on DT.
(by analogy with time-harmonic elastic case [Aquino, B 19])
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Transient or time-harmonic viscoelasticity

Some remarks

• If more-general boundary decomposition Γ = ΓD ∪ ΓN ∪ Γc (with possibly |Γc| ̸= 0), use

U :=
{
v ∈V, v= 0 on ΓD

}
, W :=

{
v ∈V, v= 0 on ΓD∪Γc

}
⊂ U .

• For well-posed BCs, |Γc| = 0 and W = U .

Ω

Γc (BC unknown)

ΓN (σ.n = g)

ΓD (u = 0)

∂Ω = ΓN ∪ ΓD ∪ Γc

Ωm (u = um)

Ω

ΓN (σ.n = g)

ΓD (u = 0)

∂Ω = ΓN ∪ ΓD

Ωm (u = um)

partially-specified BCs well-posed BCs

• If additional prescribed excitations, weak balance of linear momentum becomes∫
Ω

∫ T

0

(
σ :ε[w] + ρü·w

)
dt dV = F(w) ∀w ∈ W,

• Initial (final) rest assumed for simplicity for u (w). How to adapt to cases with unknown
initial values for u?

• Weighted ECR of form E = Ee + γEv easy to implement (e.g. stronger focus on dissipation).
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Transient or time-harmonic viscoelasticity

MECR formulation for the time-harmonic case

• Conventions: T = 2π/ω and∫
Ω

∫ T

0
u·v dV dt =

π

ω

∫
Ω
Re(u·v) dV,

〈
∂xf, x̂

〉
= Re

{
(∂xRf + i∂xIf)·x̂

}
• Quadratic potentials become Hermitian forms, and

ψ(ε,α) =
1

2

(
ε :Cε : ε̄+α :Cm : ε̄+ ε :Cm :ᾱ+α :Cα :ᾱ

)
,

σe[u] = Cε :ε+ Cm :α, σv[u] = −iω(Dε :ε+Dm :α),

φ(ε̇, α̇) = ω2φ(ε,α), ∂α̇φ(ε̇, α̇) = −iω∂αφ(ε,α)

• Time-harmonic constitutive relation

σ[u] = (σe + σv)[u] = C(ω) :ε,

C(ω) = (Cε− iωDε)− (Cm− iωDm) : (Cα− iωDα)
−1 : (Cm− iωDm)
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Transient or time-harmonic viscoelasticity

Stationarity system for the time-harmonic case

• Time-harmonic ECR functional:

E(X, p;ω) :=
∫
Ω

{
ϵψ(ε,α,σ

e,A, p) + Tϵφ(ε,α,σ
v,A, p;ω)

}
dV,

with Legendre-Fenchel gaps given by

ϵψ(ε,α,σ
e,A, p) := ψ(ε,α, p) + ψ⋆(σe,A, p)− Re

[
σe : ε̄−A :ᾱ

]
,

ϵφ(ε,α,σ
v,A, p;ω) := ω2φ(ε,α, p) + φ⋆(σv,A, p)−Re

[
iω(σv : ε̄+A :ᾱ)

]
,

• MECR functional:

Λκ(X, p;ω) := E(X, p;ω) + 1
2
κD(u−uobs,u−uobs),

• Lagrangian (with Lagrange multiplier w ∈W):

L(X,w, p;ω) := Λκ(X, p;ω)− Re
{ ∫

Ω

(
(σe+σv) :ε[w̄]− ρω2u·w̄

)
dV

}
.

Local stationarity equations yield

σ = C(ω) :ε+ S(ω) :η,

where S(ω) Hermitian positive definite:

S(ω) = CS
ε +

1
T
DI + ĈT: (Cα− iωDα)

−1 : ( 1
T
Dα+ω2Dα :C−1

α :Dα) : (Cα+iωDα)
−1 : Ĉ.
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Transient or time-harmonic viscoelasticity

Stationarity system for the time-harmonic case

• Global stationarity equations: A priori they read∫
Ω

(
σ :ε[ŵ]− ρω2u·ŵ

)
dV = 0 ∀ ŵ ∈W.∫

Ω

{(
∂εψ − σe − iωT (iω∂εφ+ σv)

)
:ε[û] + ρω2w·û

}
dV = −κD(u−uobs, û) ∀ û∈U .

• Use results from local stationarity, to obtain∫
Ω

{(
C(ω) :ε[u]

)
:ε[ŵ]− ρω2u·ŵ

}
dV +

∫
Ω

(
S(ω) :ε[w]

)
:ε[ŵ] dV = 0 ∀ ŵ ∈W∫

Ω

((
C(ω) :ε[w]

)
:ε[û]− ρω2w·û

)
dV − κD(u−uobs, û) = 0 ∀ û∈U

• Stationarity system: perturbed mixed pb. (as in [Aquino, B 19] for time-harmonic elasticity)

S(w, ŵ;ω) + C(u, ŵ;ω) = 0 ∀ ŵ ∈W,

C(u, û;ω)− κD(u, û) = −κD(uobs, û) ∀ û∈U ,

C(u, ŵ;ω) =
(
C(ω) :ε[u], ε[ŵ]

)
Ω
− ω2

(
ρu, ŵ

)
Ω
,

S(w, û;ω) =
(
S(ω) :ε[w], ε[ŵ]

)
Ω

• Key property: S coercive on W×W.
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Transient or time-harmonic viscoelasticity

Numerical results (computations by P. Salasiya, B. Guzina)

• (possibly overlapping) subzones Ω = S1 ∪ . . . ∪ SM
• Identify heterogeneous p subzone-wise
• Computational experiments: 4 sources, 2 excitation directions each, 4 frequencies,
M = 4×4 square subzones

• Synthetic data generated with fine mesh (h = .0025, p = 3);
• Identification, stationarity solves etc. performed with coarser mesh (h = .05, p = 3), avoids

“inverse crime”;
• Λ̃κ(p) minimized using SLSQP algorithm, p pixel-wise constant, N ×N pizels per subzone,

resolution refinement N = 1, 5, 7.
• Noisy data: under progress, κ set by seeking the “corner” of ther L-curve.

following Tan et al. (2016), McGarry et al. (2022) for elastography
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Transient or time-harmonic viscoelasticity

Numerical results (P. Salasiya, B. Guzina)

Isotropic standard linear solid model, p=(κ, µ, κ′, µ′, η, χ)

C(p, ω) =
3κ(κ′− iωη)

κ+ κ′− iωη
J +

2µ(µ′− iωχ)

µ+ µ′− iωχ
K,

Parameter κ µ κ′ µ′ η χ

Background 8 3 3 1 0.01 0.3

Inclusion 10 5 5 2.5 0.05 0.7

Initial guess 2 2 2 2 0.005 0.005
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Transient or time-harmonic viscoelasticity

Numerical results (P. Salasiya, B. Guzina)

Parameter κ µ κ′ µ′ η χ

Background 8 3 3 1 0.01 0.3

Inclusion 10 5 5 2.5 0.05 0.7

Initial guess 2 2 2 2 0.005 0.005

Kelvin-Voigt bulk approximation (due to η ≪ 1):

K(p, ω) = κa − iηaω +O((ηω)2), κa =
κκ′

κ+κ′
, ηa =

κ2η

(κ+κ′)2
.
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Transient or time-harmonic viscoelasticity

• Stationarity problem for the transient case:

▷ well-posedness results, conditions on the data?
▷ potential computational bottleneck

Thank you for your kind attention!
Any questions?
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