ILL POSED PROBLEMS

Faker, Ben Belgacem

LMAC-UTCOMPIÈGNE

QUIBERON Sept. 2024

1

Ill-Posedness?

INTUITIVE DEFINITION?

- It is all about solving mathematical problems (Algebraic Equations (AE), Ordinary Differential Equations (ODE), Algebraic Differential Equations (ADE) , Partial Differential Equations (PDE) , ...).
- Ill-posed problems are <u>hard to solve</u> unless everything is perfect (impossible!).

MATHEMATICAL DEFINITION?

- Hadamard tryptic for well posedness : Existence-Uniqueness-Stability.
- A non-well posed problem is an ill posed problem (\Longrightarrow) At least one of the three rings E.-U.-S. is missing.

Abstract examples

Set $I = (0, \pi)$. Given the kernel $K \in L^2(I \times I)$. Define the Fredholm operator

$$
A: L^2(I) \to L^2(I), \qquad f \mapsto Af(s) = \int_I K(s,t)f(t) dt.
$$

LEM. 1 A is a compact operator (\Longrightarrow) A⁻¹ cannot be continuous.

PROOF : Hilbert Schmidt theorem (\implies) The singular values $(\sigma_k)_{k>0}$ of A decay toward zero. A^{-1} cannot be bounded.

THE PROBLEM : FIND $f \in L^2(I)$ such that

 $Af = g$

is ill posed, because of the instability.

Ill-posedness Degree?

Terminology by G. Wahba 1980.

DEF. 2 (B. Hoffmann) The compactness degree of A is related to the 'decreasing rate' of the singular values sequence $(\sigma_k)_{k>0}$. It is defined to be the real number

$$
q = \lim_{k \to \infty} -\frac{\ln(\sigma_k)}{\ln k}
$$

DEF. 3 If A is compact, the ill posedness degree of problem $Af = g$ is the comptactness degree of A.

REM. 1 — Mild ill posedness $(0 < q < 1)$

- Moderate ill posedness $(1 < q < \infty)$
- Severe ill posedness $(q = \infty)$

Smoothness of the kernel

Expand the kernel $K(s,t)$ on the Legendre polynomials
 $K(s,t) = \sum a_j(s)L_j(t) + E_k(t)$

$$
K(s,t) = \underbrace{\sum_{0 \le j \le p-1} a_j(s) L_j(t)}_{K_k(s,t)}
$$

 A_p is the operator defined by means of K_p , Rank $A_p = p$.

PROP. 4 If $K \in L^2(I, H^m(I))$ with $m \geq 1$. Then, the compactness degree of A is at least ^m.

PROOF : Observe first that

$$
||A - A_p||_{\mathcal{L}(L^2(I), L^2(I))} \le ||E_p||_{L^2(I \times I)} \le Cp^{-m}.
$$

Then,

$$
\sigma_p \le \inf_{\text{Rank } D_p = p} \|A - D_p\|_{\mathcal{L}(L^2(I), L^2(I))} \le \|A - A_p\|_{\mathcal{L}(L^2(I), L^2(I))}.
$$

Inverse Heat transfer problems

Initial State Reconstruction

Heat Equation

Let $I = (0, \pi)$ and $Q = I \times]0, T[$. The heat equation

$$
\partial_t y - \partial_{xx} y = 0 \quad \text{in } Q,
$$

$$
y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 \quad \text{on } (0, T),
$$

$$
y(\cdot, 0) = \varphi \quad \text{on } I.
$$

Direct problem:

The initial state φ is known, find the whole temperature field $y(t,(\cdot))$.

Inverse problem:

The final state $y(T, (\cdot))$ is known (observed), reconstruct φ .

Fourier Method

Hilbert (Fourier) basis in $L^2(I)$

$$
e_k(x) = \sqrt{\frac{2}{\pi}} \sin(kx), \qquad -\partial_{xx}e_k(x) = k^2 e_k(x), \qquad k \ge 1
$$

Projection of the initial condition and the solution
\n
$$
\varphi(x) = \sum_{k \ge 1} \varphi_k e_k(x); \qquad y(t, x) = \sum_{k \ge 1} y_k(t) e_k(x)
$$

Then, solve the ODE

$$
y'_k(t) + k^2 y_k(t) = 0 \quad \text{in } (0, T),
$$

$$
y_k(0) = \varphi_k
$$

Easy computations produce
 $y(t,x) = \sum$

$$
y(t,x) = \sum_{k \ge 1} y_k(t)e_k(x) = \sum_{k \ge 1} \varphi_k e^{-k^2 t} e_k(x)
$$

$$
Final State (at $t = T$)
$$

Consider the operator

$$
B: L^{2}(I) \to L^{2}(I)
$$

$$
\varphi \to y(\cdot, T) = \sum_{k \ge 1} \varphi_{k} e^{-k^{2}T} e_{k}(x)
$$

B is continuous

$$
\|B\varphi\|_{L^2(I)} \le \|\varphi\|_{L^2(I)}
$$

SMOOTHNESS: $B\varphi$ is an analytic function in I.

Spectrum $(B) = \{e^{-k^2T}, k \ge 1\} \iff B$ is a compact operator. The range $R(B)$ is not closed in $L^2(I)$.

compactness degree : exponential

Reconstruction

WE KNOWN NOTHING ABOUT φ .

Assume that $y(\cdot, T)$ is observed, $\psi = y(\cdot, T)(?)$ is the (inexact!) observation. $\rm Reconstruction~of~\varphi$

$$
\psi = \sum_{k \ge 1} \psi_k e_k(x) \quad (\Longrightarrow) \quad \varphi = B^{-1} \psi = \sum_{k \ge 1} \psi_k e^{k^2 T} e_k(x)
$$

QUESTION : $\varphi \in L^2(I)$?

$$
\|\varphi\|_{L^2(I)} = \sqrt{\sum_{k\geq 1} (\psi_k)^2 e^{2k^2T}} < \infty
$$
? Answer

Spectrum $(B^{-1}) = \{e^{k^2T}, k \ge 1\} \implies B^{-1}$, an unbounded operator

Irreversiblity?

The heat transfer equation, with a final condition

$$
\partial_t y - \partial_{xx} y = 0 \quad \text{in } Q,
$$

$$
y(0, \cdot) = 0, \quad y(\pi, \cdot) = 0 \quad \text{on } (0, T),
$$

$$
y(T, 0) = \psi \quad \text{on } I.
$$

PROP. 5 No solutions for so many ψ (proven previously).

THAT'S WHY : WE CURRENTLY SAY THAT THE HEAT DIFFUSION IS AN irreversible process. Or, the heat equation is not time-reversible.

The temperature for $t(0 \le t \le 1/2)$ (left). Reconstruction of the initial state from $T(1/2, (\cdot))$ through $\stackrel{2}{}$ $\frac{1}{2}$ (leit).
through Fourier coef. (right) White Noise on the observations: $T(1/2, (\cdot) + \epsilon_k)$

$$
\epsilon_k \sim \mathcal{N}(0, \sigma^2), \quad \sigma =, k \ge 100
$$

White Noise

 $\epsilon_k \sim \mathcal{N}(0, \sigma^2), \qquad \sigma = 1 \times 10^{-k}$ $k = 95$ (left) $k = 94$ (right)

A Controllability problem

Boundary Control operator

Let $u = u(t) \in L^2(0,T)$ be given.

The state heat equation

$$
\partial_t y_u - \partial_{xx} y_u = 0 \quad \text{in } Q,
$$

$$
y_u(0, t) = 0, \quad y_u(\pi, t) = u(t) \quad \text{on } (0, T),
$$

$$
y_u(x, 0) = 0 \quad \text{on } I.
$$

The control operator

$$
(Bu)(x) = y_u(x,T) \in L^2(I)?
$$

Fourier Analysis (of B)

Modify the boundary condition so to use Fourier basis

$$
y_u(t,x) = z(t,x) + \frac{x}{\pi}u(t)
$$

Then

$$
\partial_t z - \partial_{xx} z = -\frac{x}{\pi} u'(t) \quad \text{in } Q,
$$

\n
$$
z(0, t) = 0, \quad z(\pi, t) = 0 \quad \text{on } (0, T),
$$

\n
$$
z(x, 0) = -\frac{x}{\pi} u(0) \quad \text{on } I.
$$

Fourier expansion of that RHS and IC

$$
\frac{x}{\pi} = \sum_{k \ge 1} a_k e_x(x) = \sum_{k \ge 1} (-1)^{k+1} \frac{\pi}{k} e_x(x)
$$

Formal Calculations

Fourier expansion of \boldsymbol{z}

$$
z(t,x) = \sum_{k \ge 1} z_k(t)e_x(x)
$$

Then

$$
z'_{k}(t) + k^{2} z_{k}(t) = -a_{k} u'(t) \quad \text{in (0, T)},
$$

$$
z_{k}(0) = -a_{k} u(0).
$$

Solve the equation (Details on the black board!)

$$
z_k(t) = -a_k u(t) + (-1)^{k+1} k \int_0^t u(s) e^{-k^2(T-s)} ds
$$

Back to the control operator

The control operator
\n
$$
Bu = y_u(T, x) = z(T, x) + \frac{x}{\pi}u(T) = \sum_{k \ge 1} [z_k(T) + a_k u(T)]e_k(x)
$$

Explicit form of B

The Control operator B is unbounded (non-continuous)

$$
B: D(B) \subset L^{2}(0,T) \to L^{2}(I)
$$

$$
u \to Bu(x) = \sum_{k \ge 1} (-1)^{k+1} \left[k \int_{0}^{T} u(t) e^{-k^{2}(T-t)} dt \right] e_{k}(x)
$$

The adjoint operator is easily derived through the identity

 $(Bu, \varphi)_{L^2(I)} = (u, B^* \varphi)_{L^2(0,T)}$

It is expressed as

$$
B^* : D(B^*) \subset L^2(I) \to L^2(0,T)
$$

$$
\varphi \to B^* \varphi(t) = \sum_{k \ge 1} (-1)^{k+1} k \varphi_k e^{-k^2(T-t)}
$$

Properties of B

Density of the domains

$$
\overline{\mathbb{D}(B)} = L^2(0,T), \qquad \overline{\mathbb{D}(B^*)} = L^2(I)
$$

We have

$$
\mathcal{N}(B^*) = \{0\} \left[\left(\Longrightarrow \right) \quad \overline{\mathcal{R}(B)} = L^2(I) \right]
$$

A sharp analysis ^yields (L. Schwartz, Thesis 1937),

$$
\dim \overline{\mathcal{R}}(B^*)^{\perp} = +\infty \quad (\Longrightarrow) \quad \dim \mathcal{N}(B) = +\infty
$$

Caution! \perp is taken in $L^2(0,T)$.

Exact Controllability

Let $y_T \in L^2(I)$ a fixed (desired!) state.

Exact-controllability (\implies) find $u = u(t)$ satisfying $(Bu)(x) = y_u(x,T) = y_T(x)$ The exact-controllability may FAIL (\iff) $\mathcal{R}(B) \neq L^2(I)$.

UNIQUENESS : Fails! dim $\mathcal{N}(B) \neq \{0\}.$ EXISTENCE AND STABILITY : Interconnected, through the open map theorem!

Control Space!

We have (the control space!) $-(\text{Clarkson-Erdös-Schwartz theorem})$

$$
\overline{\mathcal{R}(B^*)} = \left\{ v \in L^2(0,T), \qquad v(t) = \sum_{k \ge 1} v_k e^{-k^2(T-t)} \right\}
$$

Rem. 2 We have

$$
v \in \overline{\mathcal{R}(B^*)} \quad (\Longleftrightarrow) \quad ||v||_{L^2(I)}^2 = \sum_{k \ge 1} \sum_{m \ge 1} \frac{1 - e^{-(k^2 + m^2)T}}{k^2 + m^2} v_k v_m < \infty
$$

$$
v \in \mathcal{R}(B^*) \quad (\Longleftrightarrow) \quad ||\varphi||_{L^2(I)}^2 = ||(B^*)^{-1}v||_{L^2(I)}^2 = \sum_{k \ge 1} (\varphi_k)^2 = \sum_{k \ge 1} \left(\frac{v_k}{k}\right)^2 < \infty.
$$

Non-Closeness of the ranges (Nasty! Source of ill-posedness, later)

 $\mathcal{R}(B) \neq \overline{\mathcal{R}(B)} = L^2(I), \qquad \mathcal{R}(B^*) \neq \overline{\mathcal{R}(B^*)}$

HUM CONTROL

First, Fourier expansion of y_T

$$
y_T(x) = \sum_{k \ge 1} (y_T)_k e_k(x).
$$

The HUM control $u^{\dagger} \in \overline{\mathcal{R}(B^*)}$ that is $({}^a)$

$$
u^{\dagger}(t) = \sum_{m \ge 1} (u^{\dagger})_m e^{-m^2(T-t)}, \qquad \forall t.
$$

Plugging in the explicit expression of Bu^{\dagger} , yields that

$$
(-1)^{k+1}k \sum_{m\geq 1} \frac{1 - e^{-(k^2 + m^2)T}}{k^2 + m^2} (u^{\dagger})_m = (y_T)_k, \qquad \forall k.
$$

^aUniqueness is restored! Owing to $\overline{\mathcal{R}(B^*)} = \mathcal{N}(B)^{\perp}$.

AN INFINITE LINEAR SYSTEM

Define the infinite matrices $\mathcal{C}_T, \mathcal{D}$

$$
C_T = (c_{km})_{k,m} = \left(\frac{(1 - e^{-(k^2 + m^2)T})}{k^2 + m^2}\right), \qquad D = (d_{km})_{k,m} = \left((-1)^{k+1}\frac{\delta_{km}}{k}\right).
$$

We derive that $(\mathbf{u}^{\dagger} = ((u^{\dagger})_{m \geq 1}))$

$$
\boldsymbol{u}^{\dagger} = (\mathcal{C}_T)^{-1} \mathcal{D} \, \boldsymbol{y}_T.
$$

Condition for u^{\dagger} to be in $L^2(0,T)$ is

$$
\|\boldsymbol{u}^{\dagger}\|_{L^2(0,T)}^2=\sum_{k\geq 1}\sum_{m\geq 1}\frac{1-e^{-(k^2+m^2)T}}{k^2+m^2}(u^{\dagger})_m(u^{\dagger})_k=(\mathcal{C}_T\boldsymbol{u}^{\dagger},\,\boldsymbol{u}^{\dagger})_{\ell^2(\mathbb{R})}<\infty,
$$

or again

$$
(\boldsymbol{y}_T,\,\mathcal{D}(\mathcal{C}_T)^{-1}\mathcal{D}\boldsymbol{y_T})_{\ell^2(\mathbb{R})}<\infty.
$$

EIGENVALUES

Eigenvalues of (\mathcal{C}_T) $T = 1$ (left) $T = 0.1$ (right).

EXACT-CONTROLLABILITY

Computed Controlled states. The related controls $(T = 1)$.