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Ill-Posedness?

Intuitive definition?

• It is all about solving mathematical problems (Algebraic Equations (AE),

Ordinary Differential Equations (ODE), Algebraic Differential Equations

(ADE), Partial Differential Equations (PDE), . . . ).

• Ill-posed problems are hard to solve — unless everything is perfect (impossible!).

Mathematical definition?

• Hadamard tryptic for well posedness : Existence-Uniqueness-Stability.

• A non-well posed problem is an ill posed problem (=⇒) At least one of the three

rings E.-U.-S. is missing.
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Abstract examples

Set I = (0, π). Given the kernel K ∈ L2(I × I).

Define the Fredholm operator

A : L2(I) → L2(I), f 7→ Af(s) =

∫

I

K(s, t)f(t) dt.

Lem. 1 A is a compact operator (=⇒) A−1 cannot be continuous.

Proof : Hilbert Schmidt theorem (=⇒) The singular values (σk)k≥0 of A

decay toward zero. A−1 cannot be bounded.

The problem : find f ∈ L2(I) such that

Af = g

is ill posed, because of the instability.



4

Ill-posedness Degree?

Terminology by G. Wahba 1980.

Def. 2 (B. Hoffmann) The compactness degree of A is related to the

’decreasing rate’ of the singular values sequence (σk)k≥0. It is defined to be the

real number

q = lim
k→∞

−
ln(σk)

ln k

Def. 3 If A is compact, the ill posedness degree of problem Af = g is the

comptactness degree of A.

Rem. 1 — Mild ill posedness (0 < q < 1)

— Moderate ill posedness (1 < q <∞)

— Severe ill posedness (q = ∞)
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Smoothness of the kernel

Expand the kernel K(s, t) on the Legendre polynomials

K(s, t) =
∑

0≤j≤p−1

aj(s)Lj(t)

︸ ︷︷ ︸

Kk(s,t)

+Ek(s, t)

Ap is the operator defined by means of Kp, Rank Ap = p.

Prop. 4 If K ∈ L2(I,Hm(I)) with m ≥ 1. Then, the compactness degree of A is

at least m.

Proof : Observe first that

‖A−Ap‖L(L2(I),L2(I)) ≤ ‖Ep‖L2(I×I) ≤ Cp−m.

Then,

σp ≤ inf
Rank Dp=p

‖A−Dp‖L(L2(I),L2(I)) ≤ ‖A−Ap‖L(L2(I),L2(I)).
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Inverse Heat transfer problems
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Initial State Reconstruction
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Heat Equation

Let I = (0, π) and Q = I×]0, T [. The heat equation

∂ty − ∂xxy = 0 in Q,

y(0, ·) = 0, y(π, ·) = 0 on (0, T ),

y(·, 0) = ϕ on I.

Direct problem:

The initial state ϕ is known, find the whole temperature field y(t, (·)).

Inverse problem:

The final state y(T, (·)) is known (observed), reconstruct ϕ.
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Fourier Method

Hilbert (Fourier ) basis in L2(I)

ek(x) =

√

2

π
sin(kx), −∂xxek(x) = k2ek(x), k ≥ 1

Projection of the initial condition and the solution

ϕ(x) =
∑

k≥1

ϕkek(x); y(t, x) =
∑

k≥1

yk(t)ek(x)

Then, solve the ODE

y′k(t) + k2yk(t) = 0 in (0, T ),

yk(0) = ϕk

Easy computations produce

y(t, x) =
∑

k≥1

yk(t)ek(x) =
∑

k≥1

ϕke
−k2tek(x)
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Final State (at t = T )

Consider the operator

B : L2(I) → L2(I)

ϕ→ y(·, T ) =
∑

k≥1

ϕke
−k2T ek(x)

B is continuous

‖Bϕ‖L2(I) ≤ ‖ϕ‖L2(I)

Smoothness: Bϕ is an analytic function in I.

Spectrum (B) = {e−k2T , k ≥ 1} (=⇒) B is a compact operator. The range R(B)

is not closed in L2(I).

compactness degree : exponential
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Reconstruction

We known nothing about ϕ.

Assume that y(·, T ) is observed, ψ = y(·, T )(?) is the (inexact!) observation.

Reconstruction of ϕ

ψ =
∑

k≥1

ψkek(x) (=⇒) ϕ = B−1ψ =
∑

k≥1

ψke
k2T ek(x)

Question : ϕ ∈ L2(I)?

‖ϕ‖L2(I) =

√
∑

k≥1

(ψk)2e2k
2T <∞? Answser : No!

Spectrum (B−1) = {ek
2T , k ≥ 1} (=⇒) B−1, an unbounded operator
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Irreversiblity?

The heat transfer equation, with a final condition

∂ty − ∂xxy = 0 in Q,

y(0, ·) = 0, y(π, ·) = 0 on (0, T ),

y(T, 0) = ψ on I.

Prop. 5 No solutions for so many ψ (proven previously).

That’s why : We currently say that the heat diffusion is an

irreversible process. Or, the heat equation is not time-reversible.
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Numerics

0 21 30.5 1.5 2.5 3.5

0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

0 21 30.5 1.5 2.5 3.5

0

1

−0.2

0.2

0.4

0.6

0.8

1.2

The temperature for t(0 ≤ t ≤ 1/2) (left).

Reconstruction of the inital state from T (1/2, (·))
✭

✭
✭

✭
✭

✭
✭

✭
✭✭❤

❤
❤

❤
❤

❤
❤

❤
❤❤

through Fourier coef. (right)

White Noise on the observations: T (1/2, (·)) + ǫk

ǫk ∼ N (0, σ2), σ =, k ≥ 100
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A Controllability problem
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Boundary Control operator

Let u = u(t) ∈ L2(0, T ) be given.

The state heat equation

∂tyu − ∂xxyu = 0 in Q,

yu(0, t) = 0, yu(π, t) = u(t) on (0, T ),

yu(x, 0) = 0 on I.

The control operator

(Bu)(x) = yu(x, T )∈ L2(I)?
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Fourier Analysis (of B)

Modify the boundary condition so to use Fourier basis

yu(t, x) = z(t, x) +
x

π
u(t)

Then

∂tz − ∂xxz = −
x

π
u′(t) in Q,

z(0, t) = 0, z(π, t) = 0 on (0, T ),

z(x, 0) = −
x

π
u(0) on I.

Fourier expansion of that RHS and IC

x

π
=
∑

k≥1

akex(x) =
∑

k≥1

(−1)k+1π

k
ex(x)
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Formal Calculations

Fourier expansion of z

z(t, x) =
∑

k≥1

zk(t)ex(x)

Then

z′k(t) + k2zk(t) = −aku
′(t) in (0, T ),

zk(0) = −aku(0).

Solve the equation (Details on the black board!)

zk(t) = −aku(t) + (−1)k+1k

∫ t

0

u(s)e−k2(T−s) ds

Back to the control operator

Bu = yu(T, x) = z(T, x) +
x

π
u(T ) =

∑

k≥1

[zk(T ) + aku(T )]ek(x)
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Explicit form of B

The Control operator B is unbounded (non-continuous)

B : D(B) ⊂ L2(0, T ) → L2(I)

u→ Bu(x) =
∑

k≥1

(−1)k+1

[

k

∫ T

0

u(t)e−k2(T−t) dt

]

ek(x)

The adjoint operator is easily derived through the identity

(Bu,ϕ)L2(I) = (u,B∗ϕ)L2(0,T )

It is expressed as

B∗ : D(B∗) ⊂ L2(I) → L2(0, T )

ϕ→ B∗ϕ(t) =
∑

k≥1

(−1)k+1k ϕk e
−k2(T−t)
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Properties of B

Density of the domains

D(B) = L2(0, T ), D(B∗) = L2(I)

We have

N (B∗) = {0}
[

(=⇒) R(B) = L2(I)
]

A sharp analysis yields (L. Schwartz, Thesis 1937),

dim R(B∗)⊥ = +∞ (=⇒) dim N (B) = +∞

Caution! ⊥ is taken in L2(0, T ).
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Exact Controllability

Let yT ∈ L2(I) a fixed (desired!) state.

Exact-controllability (=⇒) find u = u(t) satisfying

(Bu)(x) = yu(x, T ) = yT (x)

The exact-controllability may fail (⇐⇒) R(B) 6= L2(I).

Uniqueness : Fails! dim N (B) 6= {0}.

Existence and Stability : Interconnected, through the open map theorem!
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Control Space!

We have (the control space!) —(Clarkson-Erdös-Schwartz theorem)—

R(B∗) =
{

v ∈ L2(0, T ), v(t) =
∑

k≥1

vke
−k2(T−t)

}

Rem. 2 We have

v ∈ R(B∗) (⇐⇒) ‖v‖2L2(I) =
∑

k≥1

∑

m≥1

1− e−(k2+m2)T

k2 +m2
vkvm <∞

v ∈ R(B∗) (⇐⇒) ‖ϕ‖2L2(I) = ‖(B∗)−1v‖2L2(I) =
∑

k≥1

(ϕk)
2
=
∑

k≥1

(vk
k

)2

<∞.

Non-Closeness of the ranges (Nasty! Source of ill-posedness, later)

R(B) 6= R(B) = L2(I), R(B∗) 6= R(B∗)
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HUM control

First, Fourier expansion of yT

yT (x) =
∑

k≥1

(yT )kek(x).

The HUM control u† ∈ R(B∗) that is (a)

u†(t) =
∑

m≥1

(u†)m e−m2(T−t), ∀t.

Plugging in the explicit expression of Bu†, yields that

(−1)k+1k
∑

m≥1

1− e−(k2+m2)T

k2 +m2
(u†)m = (yT )k, ∀k.

aUniqueness is restored! Owing to R(B∗) = N (B)⊥.
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An infinite linear system

Define the infinite matrices CT ,D

CT = (ckm)k,m =

(

(1− e−(k2+m2)T )

k2 +m2

)

, D = (dkm)k,m =

(

(−1)k+1 δkm
k

)

.

We derive that (u† = ((u†)m≥1))

u
† = (CT )

−1D yT .

Condition for u† to be in L2(0, T ) is

‖u†‖2L2(0,T ) =
∑

k≥1

∑

m≥1

1− e−(k2+m2)T

k2 +m2
(u†)m(u†)k = (CTu

†, u†)ℓ2(R) <∞,

or again

(yT , D(CT )
−1Dy

T
)ℓ2(R) <∞.
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Eigenvalues
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Exact-Controllability
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