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I1l1-Posedness? '

INTUITIVE DEFINITION?

e It is all about solving mathematical problems (Algebraic Equations (AE),
Ordinary Differential Equations (ODE), Algebraic Differential Equations
(ADE), Partial Differential Equations (PDE), ...).

e Ill-posed problems are hard to solve — unless everything is perfect (impossible!).

MATHEMATICAL DEFINITION?
e Hadamard tryptic for well posedness : Existence-Uniqueness-Stability.

e A non-well posed problem is an ill posed problem (=) At least one of the three
rings E.-U.-S. is missing.



Abstract examples '

Set I = (0,7). Given the kernel K € L*(I x I).
Define the Fredholm operator

A:L*(I) — L*(1), fHAﬂ@:[K@ﬁﬂﬂﬁ

LEM. 1 A is a compact operator (=) A~ cannot be continuous.

ProOOF : Hilbert Schmidt theorem (=) The singular values (o )r>0 of A
decay toward zero. A~! cannot be bounded.

THE PROBLEM : FIND [ € L*(I) SUCH THAT

Af =g

IS ILL POSED, BECAUSE OF THE INSTABILITY.



IllI-posedness Degree? '

Terminology by G. Wahba 1980.

DeF. 2 (B. Hoffmann) The compactness degree of A is related to the
‘decreasing rate’ of the singular values sequence (o )r>o0. It is defined to be the
real number
In(oy)
— 1 —
1= 55 Tk

Der. 3 If A is compact, the ill posedness degree of problem Af = g is the
comptactness degree of A.

REM. 1 — Mild il posedness (0 < g < 1)
— Moderate ill posedness (1 < q < o)

— Severe ill posedness (¢ = 00)



Smoothness of the kernel '

Expand the kernel K (s,t) on the Legendre polynomials

K(Sat) — Z aj(S)Lj(t) +Ek(57t)

0<j<p—1

7

~~

Kk(s,t)

A, is the operator defined by means of K,, Rank A, = p.

Propr. 4 If K € L*(I, H™(I)) with m > 1. Then, the compactness degree of A is
at least m.

PROOF : Observe first that
A= Apllzczzy, 2y < W Epllr2axn < Cp™™.
Then,

% S i 1A = Dolleazay .2y < A= Apllewem.22ay).



Inverse Heat transfer problems .



Initial State Reconstruction '



Heat Equation .

Let I = (0,7) and @Q = Ix]0,T|. The heat equation
Oy — Ozzy =0 in Q,
y(0,-) =0, y(m,-) =0 on (0,7,
y(') O) = ¥ on [.

Direct problem:
The initial state ¢ is known, find the whole temperature field y(t, (-)).

Inverse problem:

The final state y(7T, (-)) is known (observed), reconstruct ¢.



Fourier Method '

Hilbert (Fourier ) basis in L?(I)

2
ex(z) = \/jsin(k:c), —Opwer(z) = ker (), k>1
™
Projection of the initial condition and the solution

o(x) =) wrex(x);  ylt,z) =) y(t)er(x)

k>1 k>1

Then, solve the ODE
yi(t) + Ky (t) = 0 in (0,T),

Easy computations produce

y(t,2) =D yp(Ben(x) =Y e tey(a)

k>1 E>1
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Final State (at t =1T) I

Consider the operator
B: L*(I) — L*(I)

o=y, T)=> ore ¥ Tep()
k>1

B IS CONTINUOUS

Bl < llellLz

SMOOTHNESS: By is an analytic function in 1.

Spectrum (B) = {e‘kQT, k > 1} (=) B is a compact operator. The range R(B)
is not closed in L?(I).
COMPACTNESS DEGREE : EXPONENTIAL
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Reconstruction '

WE KNOWN NOTHING ABOUT .

Assume that y(-,T) is observed, ¢ = y(-,T)(?7) is the (inexact!) observation.
Reconstruction of ¢

= tper(a) (=) o=B"Yp=> e’ Tey(x)

k>1 k>1

QUESTION : ¢ € L*(I)?

lollirzcny = > ()27 <o00?  ANSWSER : NO!
k>1

Spectrum (B™1) = {¥" T,k > 1} (=) B~!, an unbounded operator
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Irreversiblity? '

The heat transfer equation, with a final condition

Oy — Oppy =0 in @,
y(07 ) — 07 y(ﬂ-a ) =0 on (07T>7
y(T,0) =) on I.

PrOP. 5 No solutions for so many v (proven previously).

THAT’S WHY : WE CURRENTLY SAY THAT THE HEAT DIFFUSION IS AN
IRREVERSIBLE PROCESS. OR, THE HEAT EQUATION IS NOT TIME-REVERSIBLE.
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NUMERICS '

|
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The temperature for t(0 <t < 1/2) (left).
Reconstruction of the inital state from T'(1/2,(+)) W (right)

White Noise on the observations: T(1/2,(-)) + €x

e, ~N(0,0%), o=,k>100
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NUMERICS

3.5

o=1x10"F
k = 94 (right)

White Noise

(left)

e ~ N(0,0%),
k =95



A Controllability problem.
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Boundary Control operator '

Let u = u(t) € L?(0,T) be given.

The state heat equation

atyu — axxyu =0 1n Qa

Y, (0,1) = 0, Yu (7, 1) = u(t)

on (0,7,

Yu(z,0) =0 on .

The control operator
(Bu)(z) = yu(z,T) € L*(1)?
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Fourier Analysis (of B) I

Modity the boundary condition so to use Fourier basis

yult, ) = 2(t, ) + %u(t)

Then
T ,
01z — Oppz = ——u (1) in Q,
0
2(0,t) =0, z(m,t) =0 on (0,7,
X

2(x,0) = —;u(()) on I.

Fourier expansion of that RHS and IC

= = akea(r) = Y ()M Zeu(w)

T
E>1 E>1
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Formal Calculations '

2(tx) =) z(t)es(x)

k>1

Fourier expansion of z

Then

2 (t) + k22 (t) = —apu/(t) in (0,7),
21(0) = —aiu(0).

Solve the equation (Details on the black board!)
t
zi(t) = —agu(t) + (—1)’““]{:/ u(s)e " T'=9) ds
0

Back to the control operator

Bu =y, (T,z) = 2(T,x) + %u(T) = Z[zk(T) + aru(T)]ex(x)
k>1
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Explicit form of B '

The Control operator B is unbounded (non-continuous)
B:D(B) C L*(0,T) — L*(I)
T
u— Bu(z) = ) (—1)**! [k / u(t)e F (T—1) dt] e ()
E>1 0

The adjoint operator is easily derived through the identity
(Bu, )21y = (u, B*¢)r2(0,1)
It is expressed as
B* : D(B*) c L*(I) — L*(0,T)

o — Bo(t) = Z(_l)kz—klk@k o~k (T—t)
k>1



Properties of B '

Density of the domains

D(B) = L*(0,T), D(B*) = L*()

We have
N(B*) = {0} (=) R(B) = L*(]),

A sharp analysis yields (L. Schwartz, Thesis 1937),
dim R(B*)* = +o00 (=) dim N(B) = 400

Caution! + is taken in L?(0,T).

20
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Exact Controllability .

Let yr € L*(I) a fixed (desired!) state.

Exact-controllability (=) find u = u(t) satisfying

(Bu)(z) = yu(z, T) = yr(z)

The exact-controllability may FAIL (<) R(B) # L*(I).

UNIQUENESS :  Fails! dim N(B) # {0}.

EXISTENCE AND STABILITY : Interconnected, through the open map theorem!
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Control Space! '

We have (the control space!) —(Clarkson-Erdos-Schwartz theorem)—

R(B*) = {v c L2(0,T),  o(t) = kae_w@_t)}

k>1

REM. 2 We have

VeRE) (=) ol =3 3 S v < oo
k>1m>1
* *\ — 2 (3 2
VERWBY) (=) el = 1B ol = X 0 = 30 (%) <o
k>1 k>1

Non-Closeness of the ranges (Nasty! Source of ill-posedness, later)

R(B) #R(B) = L*(I),  R(B) #R(B")



HUM CONTROL '

First, Fourier expansion of yp

The HUM control u' € R(B*) that is (*)
uf(t) =D (uh)me™ T, v,

m>1

Plugging in the explicit expression of Bu', yields that

1 — e—(k2+m2)T

)k Y s (W = (g, V.

m>1

2Uniqueness is restored! Owing to R(B*) = N (B)=,.
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AN INFINITE LINEAR SYSTEM '

Define the infinite matrices Cr, D

1 — 6—(k2+m2)T)

Cr = (Ckm)k,m = <( o > D= (dem)r,m = ((—1)’““5’“7”1) .

We derive that (u! = ((u'),>1))

’U,T = (CT)_1D Yr.

Condition for u' to be in L2?(0,T) is

2 L — e t ot
H’LL ||L2(O,T) — Z Z L2 n m2 (U )m(u )k — (CTU’ , W )EQ(R) < 00,
E>1m>1

or again
(Y D(CT)_lpyT)g2(R) < 0Q.



25

EIGENVALUES '

@000 0 0 0 0 0 0000000000000 24r ol 0 06 06 06 0 0 0 0 0 000000

24
o 0 0 0 0 0 0 0 0 00000000000 O OE 0 0 0 0 0 0 0 0 0 0 0 0000
22+ @00 0000 0000000060000 0 22+ 00 @ 0 0 0 0 0 0 0 0 0 0 0 0000
000 —0 0 0 0 0 0 0 0 0000000000 080 —0 0 0 0 0 0 0 0 0 0 0 000
20 00— 000 0 0 0 0 0 0000000000 20+ oAl 0 0 0 0 0 0 0 0 0 0 0 00
0 —0 000 0 0 0 0000000000 @0 0 0 0 0 0 0 0 0 0 0 000
18 O—0—0 000 0 0 0 000000000 18 o8 000000 0 0 0 0 00
O—O0— 0000 0 0 0 00000000 W0 0 0 0 0 0 0 06 0 0 000
16+ O—O0— 000000 00000000 16+ 000 0 0 0 0 0 0 0o 0 0 00
O—0—0 000 06 0 0000000 00— 0 — 000 0 0 0 0 0 0 00
14+ O—O0—0—— 000 00000000 14+ 0o @ L @ o—O0—0 0 0 0 00
O—0—90 0 00 0000000 [ S @ @ @ *o—O0 00 0 0 00
12+ O—0—0 00 0 000000 12+ [ &} @ @ @ o—O0 0 0 0 00
o—0 0 0 0 0 00000 [ ] { { { { o—0 00 00
10+ o—0 0 0 0 00000 10+ [ @ @ @ o *o—O0 0 00
o—0 0 00 0000 [ @ @ @ @ *—0 00
8F o—0 00 0000 8k [ @ @ @ *o—0 00
o—0 0 0000 [ @ L @ *—0 0
6F *—0 0 000 6F [ L @ @ *—0
o—0 000 [ L @ *—0
4 | | | | | | |
107" 10 107° 107 107 10° 10° 107" 107 107 107 107 10° 10

Eigenvalues of (Cr) T =1 (left) T'= 0.1 (right).



y(T)
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EXACT430NTROLLABHIFY'

3r o—o y_T -
= [~ - rho = 1le-02
- rho = le-02 \S’ S — tho = le—01
— rho = le-04 40r . N rho j 16_06
.~ rho = 1le-06 tho = 1€

Computed Controlled states. The related controls (7' = 1).



